Preview

Russian Journal for Personalized Medicine

Advanced search

Аpproaches to the production of theranostic couples of radiopharmaceuticals for the diagnosis and treatment of prostate cancer: a literature review

https://doi.org/10.18705/2782-3806-2023-3-3-172-185

Abstract

Currently, prostate cancer (PC) is one of the most common malignant neoplasms in men. More than 400,000 cases of prostate cancer are diagnosed annually in the world; in a number of countries, it occupies the second or third place in the structure of oncological diseases. A promising technology for the diagnosis and treatment of oncological diseases in nuclear medicine is radiotheranostics as an integrated approach that combines diagnostics and therapy using a single chemical molecule, but different ratioisotopes. For prostate cancer, the diagnostic radioisotope 68Ga and the therapeutic isotopes — 177Lu and 225Ac are used. The article discusses modern technologies for the production of radiopharmaceuticals for the diagnosis and radionuclide treatment of prostate cancer using theranostic pairs based on 68Ga/177Lu isotopes, as well as the prospects for the synthesis of new therapeutic radiopharmaceuticals labeled with the 177Lu isotope.

About the Authors

M. V. Velikova
Almazov National Medical Research Centre
Russian Federation

Velikova Mariia V., Master’s student, laboratory researcher at the Theranostics Research Institute, Research Laboratory of Neuroendocrine Tumors, Research Center for Personalized Oncology, WorldClass Research Centre for Personalized Medicine

Akkuratova str., 2, Saint Petersburg, 197341



V. V. Timofeev
Almazov National Medical Research Centre
Russian Federation

Timofeev Vasiliy V., Leading Consultant of the Cyclotron-Radiochemical Production Group of the Department of Radiology, Research Assistant of the Research Institute of Theranostics, Research Laboratory of Neuroendocrine Tumors, Research Center for Personalized Oncology, World-Class Research Centre for Personalized Medicine

Saint Petersburg



D. V. Ryzhkova
Almazov National Medical Research Centre
Russian Federation

Ryzhkova Daria V. Doctor of Medical Sciences, Professor of the Russian Academy of Sciences, Head of the Department of Nuclear Medicine and Radiation Technologies with the Clinic 

Saint Petersburg



References

1. Larenkov A. Preparation of 68Ga compounds of high chemical and radiochemical purity for positron emission tomography: Ph. Candidate of Chemical Sciences: 02.00.14. Federal State Research Institution of the Burnazyan Federal Medical and Biological Center, Moscow, 2015. 154 p. In Russian

2. Velikyan I, Beyer GJ, Långström B. Microwavesupported preparation of 68Ga bioconjugates with high specific radioactivity. Bioconjug Chem. 2004;15(3)554– 60. DOI: 10.1021/bc030078f.

3. Zhernosekov KP, Filosofov DV, Baum RP et al. Processing of generator-produced 68Ga for medical application. J Nucl Med. 2007;48(10):1741–8. DOI: 10.2967/jnumed.107.040378.

4. Asti M, De Pietri G, Fraternali A, et al. Validation of 68Ge/68Ga generator processing by chemical purification for routine clinical application of 68GaDOTATOC. Nucl Med Biol. 2008;35(6):721–4. DOI: 10.1016/j.nucmedbio.2008.04.006.

5. Ocak M, Antretter M, Knopp R, et al. Full automation of 68Ga labelling of DOTA-peptides including cation exchange prepurification. Appl Radiat Isot. 2010;68(2):297–302. DOI: 10.1016/j.apradiso.2009.10.006.

6. Belosi F, Cicoria G, Lodi F, et al. Generator breakthrough and radionuclidic purification in automated synthesis of 68Ga-DOTANOC. Curr Radiopharm. 2013;6(2):72–7. DOI: 10.2174/1874471011306020002.

7. Schultz MK, Mueller D, Baum RP, et al. A new automated NaCl based robust method for routine production of gallium-68 labeled peptides. Applied Radiation and Isotopes. 2013;76:46–54. https://doi.org/10.1016/j.apradiso.2012.08.011.

8. Schuhmacher J, Maier-Borst W. A new 68Ge/68Ga radioisotope generator system for production of 68Ga in dilute HCl. The International Journal of Applied Radiation and Isotopes. 1981;32(1):31–36. DOI:10.1016/0020708x(81)90174-5.

9. Meyer GJ, Mäcke H, Schuhmacher J, et al. 68Galabelled DOTA-derivatised peptide ligands. Eur J Nucl Med Mol Imaging. 2004; 31(8):1097–104. DOI: 10.1007/s00259-004-1486-0.

10. de Blois E, Sze Chan H, Naidoo C et al. Characteristics of SnO2-based 68Ge/68Ga generator and aspects of radiolabelling DOTA-peptides. Appl Radiat Isot. 2011;69(2):308–15. DOI: 10.1016/j.apradiso.2010.11.015.

11. Mueller D, Klette I, Baum RP. Purification and labeling strategies for 68Ga from 68Ge/ 68Ga generator eluate. Recent Results Cancer Res. 2013;194:77–87. DOI: 10.1007/978-3-642-27994-2_5.

12. Antuganov DO, Ryzhkova DV, Timofeev VV, et al. Modification of the anion-exchange method of 68Ga isotope concentration and automatic synthesis of [68Ga] Ga-PSMA-11 radiopharmaceutical. Radiochemistry. 2019;61(6):523–528. In Russian

13. Israeli RS, Powell CT, Fair WR, et al. Molecular cloning of a complementary DNA encoding a prostatespecific membrane antigen. Cancer Res. 1993;53(2):227–30.

14. Ghosh A, Heston WD. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J Cell Biochem. 2004;91(3):528–39. DOI: 10.1002/jcb.10661.

15. Ross JS, Sheehan CE, Fisher HA, et al. Correlation of primary tumor prostate-specific membrane antigen expression with disease recurrence in prostate cancer. Clin Cancer Res. 2003;9(17):6357–62.

16. Eder M, Schäfer M, Bauder-Wüst U, et al. 68Gacomplex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug Chem. 2012;23(4):688–97. DOI: 10.1021/bc200279b.

17. Afshar-Oromieh A, Haberkorn U, Eder M, et al. [68Ga]Gallium-labelled PSMA ligand as superior PET tracer for the diagnosis of prostate cancer: comparison with 18F-FECH. Eur J Nucl Med Mol Imaging. 2012;39(6):1085–6. DOI: 10.1007/s00259-012-2069-0.

18. Afshar-Oromieh A, Malcher A, Eder M, et al. PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging. 2013;40(4):486–95. DOI: 10.1007/s00259012-2298-2.

19. Ajish Kumar KS, Mathur A. Total chemical synthesis of PSMA-11: API for 68Ga-PSMA-11 used for prostate cancer diagnosis. European Journal of Medicinal Chemistry Reports. 2021; 3:100014. https://doi.org/10.1016/j.ejmcr.2021.100014.

20. Benešová M, Schäfer M, Bauder-Wüst U, et al. Preclinical Evaluation of a Tailor-Made DOTA-Conjugated PSMA Inhibitor with Optimized Linker Moiety for Imaging and Endoradiotherapy of Prostate Cancer. J Nucl Med. 2015;56(6):914–20. DOI: 10.2967/jnumed.114.147413.

21. Benešová M, Bauder-Wüst U, Schäfer M, et al. Linker Modification Strategies To Control the ProstateSpecific Membrane Antigen (PSMA)-Targeting and Pharmacokinetic Properties of DOTA-Conjugated PSMA Inhibitors. J Med Chem. 2016;59(5):1761–75. DOI: 10.1021/acs.jmedchem.5b01210.

22. on Eyben FE, Picchio M, von Eyben R, et al. 68Ga-Labeled Prostate-specific Membrane Antigen Ligand Positron Emission Tomography/Computed Tomography for Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol Focus. 2018;4(5):686–693. DOI: 10.1016/j.euf.2016.11.002.

23. Baratto L, Jadvar H, Iagaru A. Prostate Cancer Theranostics Targeting Gastrin-Releasing Peptide Receptors. Mol Imaging Biol. 2018; 20(4):501–509. DOI: 10.1007/s11307-017-1151-1.

24. Minamimoto R, Sonni I, Hancock S, et al. Prospective Evaluation of 68Ga-RM2 PET/MRI in Patients with Biochemical Recurrence of Prostate Cancer and Negative Findings on Conventional Imaging. J Nucl Med. 2018;59(5):803–808. DOI: 10.2967/jnumed.117.197624.

25. Minamimoto R, Hancock S, Schneider B, et al. Pilot Comparison of 68Ga-RM2 PET and 68Ga-PSMA-11 PET in Patients with Biochemically Recurrent Prostate Cancer. J Nucl Med. 2016;57(4):557–62. DOI: 10.2967/jnumed.115.168393.

26. Eder M, Schäfer M, Bauder-Wüst U, et al. Preclinical evaluation of a bispecific low-molecular heterodimer targeting both PSMA and GRPR for improved PET imaging and therapy of prostate cancer. Prostate. 2014;74(6):659–68. DOI: 10.1002/pros.22784.

27. Bandari RP, Jiang Z, Reynolds TS, et al. Synthesis and biological evaluation of copper-64 radiolabeled [DUPA-6-Ahx-(NODAGA)-5-Ava-BBN(7-14) NH2], a novel bivalent targeting vector having affinity for two distinct biomarkers (GRPr/PSMA) of prostate cancer. Nucl Med Biol. 2014;41(4):355–63. DOI: 10.1016/j.biopha.2016.12.083.

28. Escudero-Castellanos A, Ocampo-García B, Ferro-Flores G, et al. Synthesis and preclinical evaluation of the 177Lu-DOTA-PSMA(inhibitor)-Lys3-bombesin heterodimer designed as a radiotheranostic probe for prostate cancer. Nucl Med Commun. 2019;40(3):278– 286. DOI: 10.1097/MNM.0000000000000966.

29. Liolios C, Schäfer M, Haberkorn U, et al. Novel Bispecific PSMA/GRPr Targeting Radioligands with Optimized Pharmacokinetics for Improved PET Imaging of Prostate Cancer. Bioconjug Chem. 2016;27(3):737–51. DOI: 10.1021/acs.bioconjchem.5b00687.

30. Mendoza-Figueroa MJ, Escudero-Castellanos A, Ramirez-Nava GJ, et al. Preparation and preclinical evaluation of 68Ga-iPSMA-BN as a potential heterodimeric radiotracer for PET-imaging of prostate cancer. J. Radioanal. Nucl. Chem. 2018;318:2097–2105. DOI: 10.1007/s10967-018-6285-3.

31. Casanueva FF, Perez FR, Casabiell X, et al. Correlation between the effects of bombesin antagonists on cell proliferation and intracellular calcium concentration in Swiss 3T3 and HT-29 cell lines. Proc. Natl. Acad. Sci. USA. 1996;93:1406–1411. DOI: 10.1073/pnas.93.4.1406.

32. Mansi R, Fleischmann A, Mäcke HR, et al. Targeting GRPR in urological cancers — from basic research to clinical application. Nat. Rev. Urol. 2013;10:235–244. DOI: 10.1038/nrurol.2013.42.

33. Abouzayed A, Yim C-B, Mitran B, et al. Synthesis and Preclinical Evaluation of Radio-Iodinated GRPR/ PSMA Bispecific Heterodimers for the Theranostics Application in Prostate Cancer. Pharmaceutics. 2019;11:358. DOI: 10.3390/pharmaceutics11070358.

34. Mitran B, Varasteh Z, Abouzayed A, et al. Bispecific GRPR-Antagonistic Anti-PSMA/GRPR Heterodimer for PET and SPECT Diagnostic Imaging of Prostate Cancer. Cancers (Basel). 2019;11(9):1371. DOI: 10.3390/cancers11091371

35. Lundmark F, Abouzayed A, Mitran B, et al. Heterodimeric Radiotracer Targeting PSMA and GRPR for Imaging of Prostate Cancer-Optimization of the Affinity towards PSMA by Linker Modification in Murine Model. Pharmaceutics. 2020;12(7):614. DOI: 10.3390/pharmaceutics12070614.

36. Lundmark F, Abouzayed A, Rinne SS, et al. Preclinical Characterisation of PSMA/GRPR-Targeting Heterodimer [68Ga]Ga-BQ7812 for PET Diagnostic Imaging of Prostate Cancer: A Step towards Clinical Translation. Cancers (Basel). 2023;15(2):442. DOI: 10.3390/cancers15020442.

37. Qaim SM. Theranostic radionuclides: recent advances in production methodologies. J Radioanal Nucl Chem. 2019;322:1257–1266. DOI: 10.1007/s10967-01906797-y.

38. Velikyan I, Maecke H, Langstrom B. Convenient preparation of 68Ga-based PET-radiopharmaceuticals at room temperature. Bioconjug Chem. 2008;19(2):569–73. DOI: 10.1021/bc700341x.

39. André JP, Maecke HR, Zehnder M, et al. 1,4,7-Triazacyclononane-1-succinic acid-4,7-diacetic acid (NODASA): a new bifunctional chelator for radio galliumlabelling of biomolecules. Chemical Communications. 1998;12:1301–1302. DOI: 10.1039/a801294f.

40. Viola NA, Rarig RS, Ouellette W, et al. Synthesis, structure and thermal analysis of the gallium complex of 1,4,7,10-tetraazacyclo-dodecane-N,N’,N’’,N’’’-tetraacetic acid (DOTA). Polyhedron. 2006;25(18):3457–3462. https:// doi.org/10.1016/j.poly.2006.06.039.

41. Clarke ET, Martell AE. Stabilities of the Fe(III), Ga(III) and In(III) chelates of N,N’,N’’-triazacyclononanetriacetic acid.Inorganica Chimica Acta. 1991;181:273– 280. DOI: 10.1016/S0020-1693(00)86821-8.

42. Ajish Kumar KS, Mathur A. A convenient total synthesis of PSMA-617: A prostate specific membrane antigen (PSMA) ligand for prostate cancer endotherapeutic applications. European Journal of Medicinal Chemistry Reports. 2022;6:100084. https:// doi.org/10.1016/j.ejmcr.2022.100084.

43. Pandey U, Gamre N, Lohar SP, et al. A systematic study on the utility of CHX-A’’-DTPA-NCS and NOTA-NCS as bifunctional chelators for 177Lu radiopharmaceuticals. Appl Radiat Isot. 2017;127:1–6. DOI: 10.1016/j.apradiso.2017.04.028

44. Ahenkorah S, Murce E, Cawthorne C et al. 3p-CNETA: A versatile and effective chelator for development of Al18F-labeled and therapeutic radiopharmaceuticals. Theranostics. 2022;12(13):5971–5985. DOI: 10.7150/thno.75336.

45. Zhuo L, Yang X, Liao W, et al. Comparative cell uptake study of FITC-/177Lu-labeled RM26 monomer, dimer and trimer on PC-3: improving binding affinity of gastrin releasing peptide receptor (GRPR) antagonist via bivalency/trivalency. Journal of Radioanalytical and Nuclear Chemistry. 2019;319:881–889. DOI: 10.1007/s10967-018-6396-x.


Review

For citations:


Velikova M.V., Timofeev V.V., Ryzhkova D.V. Аpproaches to the production of theranostic couples of radiopharmaceuticals for the diagnosis and treatment of prostate cancer: a literature review. Russian Journal for Personalized Medicine. 2023;3(3):172-185. (In Russ.) https://doi.org/10.18705/2782-3806-2023-3-3-172-185

Views: 570


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3806 (Print)
ISSN 2782-3814 (Online)