Preview

Russian Journal for Personalized Medicine

Advanced search

The history of research and the evolution of views on long QT syndrome. A Literature Review

https://doi.org/10.18705/2782-3806-2025-5-5-426-436

Abstract

Long QT syndrome (LQTS) is a heterogeneous hereditary or acquired myocardial repolarization disorder associated with a high risk of torsades de pointes ventricular arrhythmia and sudden cardiac death. This review traces the evolution of scientific understanding of LQTS from the first clinical descriptions in the 1950s to modern advances in molecular genetics. Particular attention is paid to key stages in the pathophysiological conceptualization of the syndrome, including the role of the sympathetic nervous system, T-wave alternans, the introduction of β-blockers and left cardiac sympathetic denervation, as well as the identification of genes responsible for various LQTS subtypes (KCNQ1, KCNH2, SCN5A, etc.). Current research directions are reviewed: the use of induced pluripotent stem cells, gene correction methods (siRNA, CRISPR/Cas9), and artificial intelligence for diagnosis and risk stratification. The contribution of domestic researchers to the development of clinical and genetic approaches to studying the syndrome is noted. The accumulated experience indicates a transition from empirical therapy to personalized management of patients with LQTS and outlines prospects for further research in the areas of genetic modifiers, pathogenetic treatments, and digital technologies in cardiology.

About the Authors

E. S. Sheyanova
Federal State Budgetary Institution “Almazov National Medical Research Centrе” of the Ministry of Health of the Russian Federation
Россия

Elizaveta S. Sheyanova — MD, Pediatric Cardiologist, Consultative and  Diagnostic Department

2 Akkuratova str., St. Petersburg, 197341



Kh. Z. Zaynalova
Federal State Budgetary Institution “Almazov National Medical Research Centrе” of the Ministry of Health of the Russian Federation
Россия

Khaibat Z. Zaynalova — MD, Pediatric Cardiologist, Consultative and Diagnostic Department

St. Petersburg



N. S. Kulchitskaya
Federal State Budgetary Institution “Almazov National Medical Research Centrе” of the Ministry of Health of the Russian Federation
Россия

Natalia S. Kulchitskaya — MD, Pediatric Cardiologist, Consultative and Diagnostic Department

St. Petersburg



A. N. Ponomareva
Federal State Budgetary Institution “Almazov National Medical Research Centrе” of the Ministry of Health of the Russian Federation
Россия

Anna N. Ponomareva — MD, Functional Diagnostics Physician

St. Petersburg



A. A. Kostareva
Federal State Budgetary Institution “Almazov National Medical Research Centrе” of the Ministry of Health of the Russian Federation
Россия

Anna A. Kostareva — MD, PhD, DSc, Director of the Institute of Molecular Biology and Genetics, Professor of the Department of Faculty Therapy with Clinic, Institute of Medical Education

St. Petersburg



A. M. Nikonenko
Federal State Budgetary Institution “Almazov National Medical Research Centrе” of the Ministry of Health of the Russian Federation
Россия

Anna M. Nikonenko — MD, Head of the Consultative and Diagnostic Department for Children, Pediatric Surgeon

St. Petersburg



T. M. Pervunina
Federal State Budgetary Institution “Almazov National Medical Research Centrе” of the Ministry of Health of the Russian Federation
Россия

Tatiana M. Pervunina — MD, PhD, DSc, Director of the Institute of Perinatology and Pediatrics, Head of the Department of Perinatology and Pediatrics

St. Petersburg



E. S. Vasichkina
Federal State Budgetary Institution “Almazov National Medical Research Centrе” of the Ministry of Health of the Russian Federation
Россия

Elena S. Vasichkina — MD, PhD, DSc, Chief Researcher, Research Department of Cardiovascular Diseases in Children

St. Petersburg



References

1. Jervell A, Lange-Nielsen F. Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval, and sudden death. American Heart Journal. 1957;54(1):59–68. https://doi.org/10.1016/0002-8703(57)90079-0

2. Romano C, Gemme G, Pongiglione R. Aritmie rare dell’eta` pediatrica. I. Tachicardia parossistica ripetitiva. Minerva Pediatr. 1963;15:1155–1164.

3. Ward O. A new familial cardiac syndrome in children. J Ir Med Assoc. 1964;54:103–106.

4. Grant R. Clinical electrocardiography. New York: Mc-Graw Hill; 1957. 225 p.

5. Schwartz PJ. 1970–2020: 50 years of research on the long QT syndrome-from almost zero knowledge to precision medicine. Eur Heart J. 2021;42(11):1063–1072. https://doi.org/10.1093/eurheartj/ehaa769

6. Yanowitz F, Preston JB, Abildskov JA. Functional distribution of right and left stellate innervation to the ventricles. Circ Res. 1966;18:416–428.

7. Moss AJ, McDonald J. Unilateral cervicothoracic sympathetic ganglionectomy for the treatment of long QT interval syndrome. N Engl J Med. 1971;285:903–904.

8. Schwartz PJ, Wolf S. QT interval prolongation as predictor of sudden death in patients with myocardial infarction. Circulation. 1978;57:1074–1077.

9. Moss AJ, Schwartz PJ. Delayed repolarization (QT or QTU prolongation) and malignant ventricular arrhythmias. Mod Concepts Cardiovasc Dis. 1982;51:85–90.

10. Curran, ME, Splawski I, Timothy KW, et al. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell. 1995;80:795–803.

11. Wang Q, Curran ME, Splawski I, et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nature Genet. 1996;12:17–23.

12. Priori SG, Napolitano C, Schwartz PJ. Low penetrance in the long-QT syndrome: clinical impact. Circulation. 1999;99(4):529–533. https://doi.org/10.1161/01.cir.99.4.529

13. Sanguinetti MC. Long QT syndrome: ionic basis and arrhythmia mechanism in long QT syndrome type 1. J. Cardiovasc. Electrophysiol. 2000;11:710–712.

14. Bhuiyan ZA, Al-Shahrani S, Al-Aama J, et al. Congenital long qt syndrome: an update and present perspective in Saudi Arabia. Front Pediatr. 2013;1:39. https://doi.org/10.3389/fped.2013.00039

15. Sanguinetti MC. Long QT syndrome: ionic basis and arrhythmia mechanism in long QT syndrome type 1. J Cardiovasc Electrophysiol. 2000;11(6):710–712.

16. Kass RS, Wiegers SE. The ionic basis of concentration- related effects of noradrenaline on the action potential of calf cardiac purkinje fibres. J. Physiol. 1982;322:541–558.

17. Kass RS, Moss AJ. Long QT syndrome: novel insights into the mechanisms of cardiac arrhythmias. J Clin Invest. 2003;112(6):810–815.

18. Belokon’ NA, Bokeriya LA, Shkol’nikova MA. Long QT syndrome as a cause of sudden death in children. Moscow: Soyuzmedinform; 1989. P. 11–13. (In Russ.)

19. Shkol’nikova MA. Long QT syndrome. Moscow: Medpraktika; 2001. 128 p. (In Russ.)

20. Belyaeva MM, Ildarova RA, Shkolnikova MA. AndersenTawil, Timothy, Jervell-Lange-Nielsen syndromes: multiorgan pathology with high risk of sudden cardiac death. Pediatria n.a. G.N. Speransky. 2016;95(3):80–86. (In Russ.)

21. Veleslavova OE, Shubik YuV, Boldueva SA, et al. Uncommon case of long QT syndrome. Journal of Arrhythmology. 2018;94:28– 34. (In Russ.) https://doi.org/10.25760/VA-2018-94-28-34

22. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–676. https://doi.org/10.1016/j.cell.2006.07.024

23. Lu X, Yang X, Huang X, et al. RNA interference targeting E637K mutation rescues hERG channel currents and restores its kinetic properties. Heart Rhythm. 2013;10(1):128– 136. https://doi.org/10.1016/j.hrthm.2012.09.124

24. Bellin M, Casini S, Davis RP, et al. Isogenic human pluripotent stem cell pairs reveal the role of a KCNH2 mutation in long-QT syndrome. EMBO J. 2013;32(24):3161–3175. https://doi.org/10.1038/emboj.2013.240

25. Priori SG, Blomstro¨m-Lundqvist C, Mazzanti А, et al. 2015 ESC Guidelines for the managementof patients with ventricular arrhythmias and the prevention of sudden cardiac death: the task force for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European society of cardiology (ESC). European Heart Journal. 2015;36(41):2793–2867. https://doi.org/10.1093/eurheartj/ehv316

26. Qureshi SF, Ali A, Venkateshwari A, et al. Genotypephenotype correlation in long QT syndrome families. Indian Pacing Electrophysiol J. 2015;15(6):269–285. https://doi.org/.1016/j.ipej.2015.12.001

27. Zullo A, Frisso G, Detta N, et al. Allelic complexity in long QT syndrome: a family-case study. Int J Mol Sci. 2017;18(8):1633. https://doi.org/10.3390/ijms18081633

28. Platonov PG, McNitt S, Polonsky B, et al. Risk stratification of type 2 long-QT syndrome mutation carriers with normal QTc interval. Circ Arrhythm Electrophysiol. 2018;11:e005918.

29. Mönnig G, Eckardt L, Wedekind H. Electrocardiographic risk stratification in families with congenital long QT syndrome. European Heart Journal. 2006;27(17):2074–2080. https://doi.org/10.1093/eurheartj/ehl159

30. Adler A, Novelli V, Amin AS, et al. An international, multicentered, evidence-based reappraisal of genes reported to cause congenital long QT syndrome. Circulation. 2020;141(6):418–428.

31. Zeppenfeld K, Tfelt-Hansen J, de Riva M, et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. European Heart Journal. 2022;43(40):3997–4126.

32. Giudicessi JR, Schram M, Bos JM, et al. Artificial intelligence-enabled assessment of the heart rate corrected QT interval using a mobile electrocardiogram device. Circulation. 2021;143(13):1274–1286.

33. Tzvi-Minker E, Dittmann S, Rickert C, et al. A MATLAB algorithm to automatically estimate the QT interval and other ECG parameters and validation using a machine learning approach in congenital long-QT syndrome. J. Cardiovasc. Transl. Res. 2025;18:1470–1481.

34. Wang Q, Shen J, Splawski I, et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell. 1995;80(5):805–811.

35. Mohler PJ, Schott JJ, Gramolini AO, et al. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature. 2003;421(6923):634–639. https://doi.org/10.1038/nature01335

36. Schulze-Bahr E, Wang Q, Wedekind H, et al. KCNE1 mutations cause Jervell and Lange-Nielsen syndrome. Nat Genet. 1997;17(3):267–268. https://doi.org/10.1038/ng1197-267

37. Abbott GW, Sesti F, Splawski I, et al. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell. 1999;97(2):175–187. https://doi.org/10.1016/s0092-8674(00)80728-x

38. Plaster NM, Tawil R, Tristani-Firouzi M, et al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell. 2001;105(4):511– 519. https://doi.org/10.1016/s0092-8674(01)00342-7

39. Splawski I, Timothy KW, Sharpe LM, et al. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell. 2004;119(1):19–31. https://doi.org/10.1016/j.cell.2004.09.011

40. Vatta M, Ackerman MJ, Ye B, et al. Mutant caveolin3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation. 2006;114(20):2104–2112. https://doi.org/10.1161/CIRCULATIONAHA.106.635268.

41. Medeiros-Domingo A, Kaku T, Tester DJ, et al. SCN4B-encoded sodium channel beta4 subunit in congenital long-QT syndrome. Circulation. 2007;116(2):134–142. https://doi.org/10.1161/CIRCULATIONAHA.106.659086

42. Chen L, Marquardt ML, Tester DJ, et al. Mutation of an A-kinase-anchoring protein causes long-QT syndrome. Proc Natl Acad Sci USA. 2007;104(52):20990–20995. https://doi.org/10.1073/pnas.0710527105

43. Wu G, Ai T, Kim JJ, et al. Alpha-1-syntrophin mutation and the long-QT syndrome: a disease of sodium channel disruption. Circ Arrhythm Electrophysiol. 2008;1(3):193–201. https://doi.org/10.1161/CIRCEP.108.769224

44. Wang F, Liu J, Hong L, et al. The phenotype characteristics of type 13 long QT syndrome with mutation in KCNJ5 (Kir3.4-G387R). Heart Rhythm. 2013;10(10):1500– 1506. https://doi.org/10.1016/j.hrthm.2013.07.022

45. Crotti L, Johnson CN, Graf E, et al. Calmodulin mutations associated with recurrent cardiac arrest in infants. Circulation. 2013;127(9):1009–1017. https://doi.org/10.1161/CIRCULATIONAHA.112.001216.

46. Boczek NJ, Gomez-Hurtado N, Ye D, et al. Spectrum and prevalence of CALM1-, CALM2-, and CALM3-encoded calmodulin variants in long QT syndrome and functional characterization of a novel long QT syndrome-associated calmodulin missense variant, E141G. Circ Cardiovasc Genet. 2016;9(2):136– 146. https://doi.org/10.1161/CIRCGENETICS.115.001323.

47. Riuró H, Campuzano O, Arbelo E, et al. A missense mutation in the sodium channel β1b subunit reveals SCN1B as a susceptibility gene underlying long QT syndrome. Heart Rhythm. 2014;11(7):1202–1209. https://doi.org/10.1016/j.hrthm.2014.03.044.


Supplementary files

Review

For citations:


Sheyanova E.S., Zaynalova Kh.Z., Kulchitskaya N.S., Ponomareva A.N., Kostareva A.A., Nikonenko A.M., Pervunina T.M., Vasichkina E.S. The history of research and the evolution of views on long QT syndrome. A Literature Review. Russian Journal for Personalized Medicine. 2025;5(5):426-436. (In Russ.) https://doi.org/10.18705/2782-3806-2025-5-5-426-436

Views: 42

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3806 (Print)
ISSN 2782-3814 (Online)