Influence of temperature on heart rate variability parameters
https://doi.org/10.18705/2782-3806-2022-2-6-42-53
Abstract
Assessment of heart rate variability (HRV) is widely used in modern sports medicine to determine the functional state of the body, planning of training cycles and rehabilitation programs. This method is distinguished not only by its accessibility and versatility, but also by its high sensitivity to environmental conditions. In this article we decided to consider the possibility of using HRV parameters to assess the degree of body adaptation to heat stress. The article considers the impact of high temperature from the position of stress, gives a description of the basic mechanisms of adaptation and physiological processes under heat stress and considers the main works in which the impact of high temperature and HRV appears.
About the Authors
A. A. MurtazinRussian Federation
Murtazin Artur A., junior researcher in the Big Data and Precision Sports Medicine Laboratory, Sports Medicine and Rehabilitation Center
Moscow
N. F. Maksjutov
Russian Federation
Maksjutov Nail’ F., junior researcher in the Big Data and Precision Sports Medicine Laboratory, Sports Medicine and Rehabilitation Center
Moscow
A. B. Usenko
Russian Federation
Usenko Anna B., PhD, researcher, Laboratory of Big Data and Precision Sports Medicine, Laboratory, Sports Medicine and Rehabilitation Center
Moscow
A. A. Izotov
Russian Federation
Izotov Alexander A., research fellow of the Biobanking Group
Moscow
K. A. Malsagova
Russian Federation
Malsagova Kristina A., PhD, research fellow of the Biobanking Group
Bol’shoi Nikolovorobinskiy per., 7/5, Moscow, 109028
T. V. Butkova
Russian Federation
Butkova Tatyana V., MD, PhD, research fellow of the Biobanking Group Tatyana V., MD, PhD, research fellow of the Biobanking Group
Moscow
A. A. Stepanov
Russian Federation
Stepanov Aleksander A., research fellow of the Biobanking Group
Moscow
A. A. Petrov
Russian Federation
Petrov Alexander Alexandrovich, Junior Researcher, Laboratory of Big Data and Precision Sports Medicine, Sports Medicine and Rehabilitation Center
Moscow
E. I. Balakin
Russian Federation
Balakin Evgenii I., MD, PhD, Senior Researcher, Laboratory of Big Data and Precision Sports Medicine
Moscow
References
1. Rossati A. Global Warming and Its Health Impact. The International Journal of Occupational and Environmental Medicine. 2017;8(1):7–20.
2. Stillman JH. Heat Waves, the New Normal: Summertime Temperature Extremes Will Impact Animals, Ecosystems, and Human Communities. Physiology (Bethesda, Md.). 2019;34(2):86–100.
3. Kim HG, Cheon EJ, Bai DS, et al. Stress and Heart Rate Variability: A Meta-Analysis and Review of the Literature. Psychiatry Investigation. 2018;15 (3):235–245.
4. Самойлов А.С., Никонов Р.В., Пустовойт В.И. Стресс в экстремальной профессиональной деятельности: монография ФГБУ ФМБЦ им. А. И. Бурназяна ФМБА России. — Москва, 2022. — С. 84.
5. Dong SY, Lee M, Park H, et al. Stress Resilience Measurement With Heart-Rate Variability During Mental And Physical Stress. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference. 2018;2018:5290–5293.
6. Пустовойт В.И., Балакин Е И., Максютов Н.Ф. и др. Изменение функционального состояния спортсменов экстремальных видов спорта в ответ на экзогенный стресс. Человек. Спорт. Медицина. 2022; S2:22–29.
7. Eston RG, Felix Z. Meerson “Adaptation, Stress and Prophylaxis”. British Journal of Sports Medicine. 1984;18(4):267.
8. Пустовойт В.И., Никонов Р.В., Самойлов А.С. и др. Цитологические и биохимические показатели крови при развитии различных неспецифических адаптационных реакций у спортсменов экстремальных видов спорта. Курортная медицина. 2021;2:85–91.
9. Пустовойт В.И., Самойлов А.С., Никонов Р.В. Особенности инфекционной патологии у спортсменов-дайверов в сложных климатических условиях. Спортивная медицина: наука и практика. 2020;10(1):67–75.
10. Romero LM, Dickens MJ, Cyr NE. The Reactive Scope Model — a new model integrating homeostasis, allostasis, and stress. Hormones and Behavior. 2009;55(3):375–389.
11. Crews DE, Tuggle AC. What is health? Allostasis and the evolution of human design. Peter Sterling Cambridge, MA: The MIT Press, 2020. American Journal of Human Biology: The Official Journal of the Human Biology Council. 2022;34(5):e23698.
12. Logan JG, Barksdale DJ. Allostasis and allostatic load: expanding the discourse on stress and cardiovascular disease. Journal of Clinical Nursing; 2008;17(7B):201–208.
13. Пустовойт В.И., Самойлов А.С. Разработка основных критериев для оценки степени адаптации организма спортсменов-альпинистов к условиям горного климата. Бюллетень физиологии и патологии дыхания. 2019;(73):42–48.
14. McEwen BS. Stress, adaptation, and disease. Allostasis and allostatic load. Annals of the New York Academy of Sciences. 1998;840:33–44.
15. Bers DM. Cardiac excitation–contraction coupling. Nature. 2002;415(6868):198–205.
16. Michael SK, Graham S, Davis GM. Cardiac Autonomic Responses during Exercise and Post-exercise Recovery Using Heart Rate Variability and Systolic Time Intervals — A Review. Frontiers in Physiology. 2017;8.
17. Tiwari R, Kumar R, Malik S, et al. Kumar Analysis of Heart Rate Variability and Implication of Different Factors on Heart Rate Variability. Current Cardiology Reviews. 2021;17(5):e160721189770.
18. Périard JD, Travers GJS, Racinais S, et al. Cardiovascular adaptations supporting human exerciseheat acclimation. Autonomic Neuroscience: Basic & Clinical. 2016;196:52–62.
19. Périard JD, Travers GJS, Racinais S, et al. Cardiovascular adaptations supporting human exerciseheat acclimation. Autonomic Neuroscience: Basic and Clinical. 2016;196:52–62.
20. Brengelmann GL, Savage MV. Temperature regulation in the neutral zone. Annals of the New York Academy of Sciences. 1997;813:39–50.
21. Schlader ZJ, Vargas NT. Regulation of Body Temperature by Autonomic and Behavioral Thermoeffectors. Exercise and Sport Sciences Reviews. 2019;47(2):116–126.
22. Flouris AD, Schlader ZJ. Human behavioral thermoregulation during exercise in the heat. Scandinavian Journal of Medicine & Science in Sports. 2015;25 Suppl 1:52–64.
23. Kobayashi M, Godin D, Nadeau R. Sinus node responses to perfusion pressure changes, ischaemia and hypothermia in the isolated blood-perfused dog atrium. Cardiovascular Research. 1985;19 (1):20–26.
24. Crandall CG, Wilson TE. Human cardiovascular responses to passive heat stress. Comprehensive Physiology. 2015;5(1):17–43.
25. Chen YH, DeHaan RL. Temperature dependence of embryonic cardiac gap junction conductance and channel kinetics. The Journal of Membrane Biology. 1993;136(2):125–134.
26. Rowell LB. Hyperthermia: a hyperadrenergic state. Hypertension (Dallas, Tex.: 1979). 1990;15(5):505– 507.
27. Jose AD, Stitt F, Collison D. The effects of exercise and changes in body temperature on the intrinsic heart rate in man. American Heart Journal. 1970;79(4):488–498.
28. Bedno SA, Li Y, Han W, et al. Niebuhr Exertional heat illness among overweight U.S. Army recruits in basic training Aviation, Space, and Environmental Medicine. 2010;81(2):107–111.
29. Trangmar SJ, González-Alonso J. Heat, Hydration and the Human Brain, Heart and Skeletal Muscles. Sports Medicine (Auckland, N.Z.). 2019;49(Suppl 1):69–85.
30. Schäfer A, Vagedes J. How accurate is pulse rate variability as an estimate of heart rate variability? A review on studies comparing photoplethysmographic technology with an electrocardiogram. International Journal of Cardiology. 2013;166(1):15–29.
31. Shin H. Ambient temperature effect on pulse rate variability as an alternative to heart rate variability in young adult. Journal of Clinical Monitoring and Computing. 2016;30(6):939–948.
32. Baevskiy RM, Chernikova AG. Analysis of heart rate variability: physiological bases and main methods of conducting. Cardiometry. 2017;10:66–76. In Russian [Баевский Р.М., Черникова А.Г. Анализ вариабельности сердечного ритма: физиологические основы и основные методы проведения. Кардиометрия. 2017;10:66–76.]
33. Земцовский Э.В. Современные представления о стрессорной кардиомиопатии у спортсменов. 2008;2:69–92.
34. Пустовойт В.И., Ключников М.С., Никонов Р.В. и др. Характеристика основных показателей вариабельности сердечного ритма у спортсменов циклических и экстремальных видов спорта. Кремлевская медицина. Клинический вестник. 2021;1:26–30.
35. Пустовойт В.И., Ключников М.С., Назарян С.Е. и др. Вариабельность сердечного ритма как основной метод оценки функционального состояния организма спортсменов, принимающих участие в экстремальных видах спорта. Современные вопросы биомедицины. 2021;15(2).
36. Пустовойт В.И. Скрининг-диагностика психоэмоционального состояния спортсменов экстремальных видов спорта методом электроэнцефалографии. Современные вопросы биомедицины. 2022;6(1).
37. Catai AM, Pastre CM., de Godoy MF, et al. Heart rate variability: are you using it properly? Standardisation checklist of procedures. Brazilian Journal of Physical Therapy. 2020;24(2):91–102.
38. Баевский Р.M. Вариабельность сердечного ритма: Теоретические аспекты и возможности клинического применения. Ультразвуковая и функциональная диагностика. 2001;3:108–127.
39. Самойлов А.С., Никонов Р.В., Пустовойт В.И. и др. Применение методики анализа вариабельности сердечного ритма для определения индивидуальной устойчивости к токсическому действию кислорода. Спортивная медицина: наука и практика. 2020;10(3):73–80.
40. Shaffer F, Ginsberg JP. An Overview of Heart Rate Variability Metrics and Norms. Frontiers in Public Health. 2017;5.
41. Yadhuraj SR, Sudarshan BG, Prasanna Kumar SC, et al. Analysis of Linear and Non-linear parameters of HRV for opting optimum parameters in wearable device. Materials Today: Proceedings. 2018;5:10644–10651.
42. Земцовский Э.В. Спортивная кардиология: Монография. — СПб, 2005. — C. 448.
43. Mowery NT, Morris JA, Jenkins JM, et al. Core temperature variation is associated with heart rate variability independent of cardiac index: a study of 278 trauma patients. Journal of Critical Care. 2011;26(5):534. e9-534.e17.
44. Abellán-Aynés O, Manonelles P, Alacid F. Cardiac Parasympathetic Withdrawal and Sympathetic Activity: Effect of Heat Exposure on Heart Rate Variability. International journal of environmental research and public health. 2021;18(11).
45. Zhu H, Wang H, Liu Z, et al. Experimental study on the human thermal comfort based on the heart rate variability (HRV) analysis under different environments. The Science of the Total Environment. 2018;616– 617:1124–1133.
46. Liu W, Lian Z, Liu Y. Heart rate variability at different thermal comfort levels. European Journal of Applied Physiology. 2008;103(3):361–366.
47. Wu G, Liu H, Wu S, et al. Can Heart Rate Variability (HRV) Be Used as a Biomarker of Thermal Comfort for Mine Workers? International Journal of Environmental Research and Public Health. 2021;18(14):7615.
48. Gwak J, Shino M, et al. Interaction between Thermal Comfort and Arousal Level of Drivers in Relation to the Changes in Indoor Temperature. International Journal of Automotive Engineering. 2018;9(2):86–91.
49. Xiong J, Lian Z, Zhang H. Physiological response to typical temperature step-changes in winter of China. Energy and Buildings. 2017;138:687–694.
50. Brenner IK, Thomas S, Shephard RJ. Autonomic regulation of the circulation during exercise and heat exposure. Inferences from heart rate variability. Sports Medicine (Auckland, N.Z.). 1998;26(2):85–99.
51. Tyler CJ, Reeve T, Hodges GJ, et al. The Effects of Heat Adaptation on Physiology, Perception and Exercise Performance in the Heat: A Meta-Analysis. Sports Medicine (Auckland, N.Z.). 2016;46(11):1699–1724.
52. Lorenzo S, Halliwill JR, Sawka MN. Heat acclimation improves exercise performance. Journal of Applied Physiology (Bethesda, Md.: 1985). 2010;109(4):1140–1147.
53. Rizzo L, Thompson MW. Cardiovascular adjustments to heat stress during prolonged exercise. The Journal of Sports Medicine and Physical Fitness. 2018;58(5):727–743.
54. Macartney MJ, Notley SR, Meade RD. Heart rate variability in older men on the day following prolonged work in the heat. Journal of Occupational and Environmental Hygiene. 2020;17(9):383–389.
55. Flouris AD, Poirier MP, Bravi A, et al. Changes in heart rate variability during the induction and decay of heat acclimation. European Journal of Applied Physiology. 2014;114(10):2119–2128.
56. Nkurikiyeyezu KN, Suzuki Y, Lopez GF. Heart rate variability as a predictive biomarker of thermal comfort. Journal of Ambient Intelligence and Humanized Computing. 2018;9(5):1465–1477.
57. Périard JD, Racinais S, Sawka MN. Adaptations and mechanisms of human heat acclimation: Applications for competitive athletes and sports. Scandinavian Journal of Medicine & Science in Sports. 2015;25 Suppl 1:20–38.
58. Ihsan M, Périard JD, Racinais S. How to integrate recovery during heat acclimation. British Journal of Sports Medicine. 2021;55(4):185–186.
Review
For citations:
Murtazin A.A., Maksjutov N.F., Usenko A.B., Izotov A.A., Malsagova K.A., Butkova T.V., Stepanov A.A., Petrov A.A., Balakin E.I. Influence of temperature on heart rate variability parameters. Russian Journal for Personalized Medicine. 2022;2(6):42-53. (In Russ.) https://doi.org/10.18705/2782-3806-2022-2-6-42-53