Потенциальные биомаркеры острого повреждения почек, вызванного контрастированием у пациентов, перенесших чрескожные коронарные вмешательства
- Р Р‡.МессенРТвЂВВВВВВВВжер
- РћРТвЂВВВВВВВВнокласснРСвЂВВВВВВВВРєРСвЂВВВВВВВВ
- LiveJournal
- Telegram
- ВКонтакте
- РЎРєРѕРїРСвЂВВВВВВВВровать ссылку
Полный текст:
Аннотация
В настоящее время наблюдается непрерывный рост числа интервенционных вмешательств в кардиологии с использованием рентгеноконтрастных веществ (РКВ), что зачастую приводит к такому грозному осложнению как контраст-индуцированное острое повреждение почек (КИ-ОПП). Проявления КИ-ОПП имеют все характеристики острого почечного повреждения (ОПП) и включают в себя абсолютное (более или равно 0,3 или более или равно 0,5 мг/дл) или относительное (более и равно 25 %) повышение сывороточного креатинина (sCr) по сравнению с исходными значениями, происходящее через 48-72 часа после внутрисосудистого введения РКВ.
Острое повреждение почек, вызванное контрастированием, является частым осложнением после внутрисосудистого введения йодсодержащих контрастных веществ и связано с увеличением длительности пребывания в стационаре и неблагоприятным отдаленным прогнозом, включая нежелательные сердечно-сосудистые события, а также полную потерю функции почек. КИ-ОПП встречается у 5-20 % госпитализированных пациентов, подвергшихся чрескожным коронарным вмешательствам.
К сожалению, аналогов йодсодержащим РКВ в настоящее время не существует, в связи с чем актуальным остается о вопрос о поиске оптимальных биомаркеров КИ-ОПП с целью ранней диагностики и профилактики этого грозного осложнения.
Диагноз КИ-ОПП основан на повышении уровня креатинина в сыворотке крови, который является поздним биомаркером повреждения почек. В настоящее время идентифицированы новые и более ранние сывороточные и мочевые биомаркеры для диагностики повреждения почек, которые могут быть выявлены до момента повышения уровня креатинина в сыворотке крови. В данной статье представлена информация о самых актуальных и современных биомаркерах КИ-ОПП.
Об авторах
Ю. В. ЛаврищеваРоссия
Лаврищева Юлия Владимировна, к.м.н., старший научный сотрудник НИЛ патогенеза и терапии артериальной гипертензии
ул. Аккуратова, д. 2, Санкт-Петербург, Россия, 197341
А. О. Конради
Россия
Конради Александра Олеговна, д.м.н., профессор, чл.-корр. РАН, заместитель генерального директора по научной работе, заведующий НИО артериальной гипертензии Института сердца и сосудов, заведующий кафедрой организации управления и экономики здравоохранения Института медицинского образования Центра Алмазова
Санкт-Петербург
А. А. Яковенко
Россия
Яковенко Александр Александрович, к.м.н., доцент кафедры нефрологии и диализа Факультета последипломного образования
Санкт-Петербург
Список литературы
1. Tehrani S, Laing C, Yellon DM, et al. Contrastinduced acute kidney injury following PCI. Eur J Clin Invest. 2013;43:483-90. https://doi.org/10.1111/eci.12061.
2. Santiago G, Byungsoo K, Selcuk A. Contrast- Induced Nephropathy and Risk of Acute Kidney Injury and Mortality After Cardiac Operations. The Annals of Thoracic Surgery. 2012;94(3):772-6. https://doi.org/10.1016/S0002-9343(97)00150-2.
3. Uchino S, Kellum JA, Bellomo R, et al. Acute renal failure in critically ill patients: a multinational, multicentre study. JAMA. 2005;294(7):813-8. https://doi.org/10.1001/jama.294.7.813.
4. McCullough PA, Shaw AD, Haase M, et al. Diagnosis of acute kidney injury using functional and injury biomarkers: workgroup statements from the tenth acute dialysis quality initiative consensus conference. Contrib Nephrol. 2013;182:13-29. https://doi.org/10.1159/000349963.
5. D’Amore C, Nuzzo S, Briguori C. Biomarkers of Contrast-Induced Nephropathy: Which Ones are Clinically Important? Intervent Cardiol Clin. 2020;9:335-44. https://doi.org/10.1016/j.iccl.2020.02.004.
6. Heyman SN, Rosen S, Rosenberger C. Renal parenchymal hypoxia, hypoxia adaptation, and the pathogenesis of radiocontrast nephropathy. Clin J Am Soc Nephrol. 2008;3(1):288-96. https://doi.org/10.2215/CJN.02600607.
7. Ferguson MA, Vaidya VS, Bonventre JV. Biomarkers of nephrotoxic acute kidney injury. Toxicology. 2008;245:182-93. https://doi.org/10.1016/j.tox.2007.12.024.
8. Chousterman BG, Bouadma L, Moutereau S, et al. Prevention of contrast-induced nephropathy by N-acetylcysteine in critically ill patients: different definitions, different results. J Crit Care. 2013;28(5):701-9. https://doi.org/10.1016/j.jcrc.2013.03.007.
9. Weyer K, Nielsen R, Petersen SV, et al. Renal uptake of 99mTc-dimercaptosuccinic acid is dependent on normal proximal tubule receptor-mediated endocytosis. J Nucl Med. 2013;54(1):159-65. https://doi.org/10.2967/jnumed.112.110528.
10. Ghys LF, Meyer E, Paepe D, et al. Analytical validation of a human particle-enhanced nephelometric assay for cystatin C measurement in feline serum and urine. Vet Clin Pathol. 2014;43(2):226-34. https://doi.org/10.1111/vcp.12144.
11. Obiols J, Bargnoux AS, Kuster N, et al. Validation of a new standardized cystatin C turbidimetric assay: evaluation of the three novel CKD-EPI equations in hypertensive patients. Clin Biochem. 2013;46(15):1542-7. https://doi.org/10.1016/j.clinbiochem.2013.05.056.
12. Schaeffner E. Determining the Glomerular Filtration Rate-An Overview. J Ren Nutr. 2017;27(6):375-80. https://doi.org/10.1053/j.jrn.2017.07.005.
13. Gaygısız Ü, Aydoğdu M, Badoğlu M, et al. Can admission serum cystatin C level be an early marker subclinical acute kidney injury in critical care patients? Scand J Clin Lab Invest. 2016;76(2):143-50. https://doi.org/10.3109/00365513.2015.1126854.
14. Shams E, Mayrovitz HN. Contrast-Induced Nephropathy: A Review of Mechanisms and Risks. Cureus. 2021;13(5):e14842. https://doi.org/10.7759/cureus.14842. 15. He Y, Deng Y, Zhuang K, et al. Predictive value of cystatin C and neutrophil gelatinase-associated lipocalin in contrast-induced nephropathy: A meta-analysis. PLoS One. 2020;15(4):e0230934. https://doi.org/10.1371/journal.pone.0230934.
15. Wang ZY, Wang YL, Wei J, et al. Role of serum cystatin C in the prediction of contrast-induced nephropathy after intra-arterial interventions. Chin Med J (Engl). 2020;133(4):408-414. https://doi.org/10.1097/CM9.0000000000000641.
16. Briguori C, Quintavalle C, Donnarumma E, et al. Novel biomarkers for contrast-induced acute kidney injury. Biomed Res Int 2014;2014:568738. https://doi.org/10.1155/2014/568738.
17. Coppolino G, Comi N, Bolignano D, et al. Urinary Neutrophil Gelatinase-Associated Lipocalin (NGAL) Predicts Renal Function Decline in Patients With Glomerular Diseases. Front Cell Dev Biol. 2020;8:336. https://doi.org/10.3389/fcell.2020.00336.
18. de Bhailís ÁM, Chrysochou C, Kalra PA. Inflammation and Oxidative Damage in Ischaemic Renal Disease. Antioxidants (Basel). 2021;10(6):845. https://doi.org/10.3390/antiox10060845.
19. Paragas N, Qiu A, Hollmen M, et al. NGAL-Siderocalin in kidney disease. Biochim Biophys Acta. 2012;1823(9):1451-8. https://doi.org/10.1016/j.bbamcr.2012.06.014
20. Briguori C, Visconti G, Rivera NV, et al. Cystatin C and contrast-induced acute kidney injury. Circulation. 2010;121(19):2117-22. https://doi.org/10.1161/CIRCULATIONAHA.109.919639.
21. Andreucci M, Faga T, Riccio E, et al. The potential use of biomarkers in predicting contrast-induced acute kidney injury. Int J Nephrol Renovasc Dis. 2016;9:205-21. https://doi.org/10.2147/IJNRD.S105124.
22. Dalili N, Chashmniam S, Khoormizi SMH, et al. Urine and serum NMR-based metabolomics in preprocedural prediction of contrast-induced nephropathy. Intern Emerg Med. 2020;15(1):95-103. https://doi.org/10.1007/s11739-019-02128-x.
23. Li S, Zheng Z, Tang X. Preprocedure and postprocedure predictive values of serum b2-microglobulin for contrast-induced nephropathy in patients undergoing coronary computed tomography angiography: a comparison with creatinine-based parameters and cystatin C. J Comput Assist Tomogr. 2015;39(6):969-74. https://doi.org/10.1097/RCT.0000000000000294.
24. Ahmed K, McVeigh T, Cerneviciute R, et al. Effectiveness of contrast-associated acute kidney injury prevention methods; a systematic review and network meta-analysis. BMC Nephrol. 2018;19(1):323. https://doi.org/10.1186/s12882-018-1113-0.
25. Yao YL, Gao Y. Present Situation and Research Progress of Kidney Function Recoverability Evaluation of Acute Kidney Injury Patient. Int J Gen Med. 2021;14:1919-1925. https://doi.org/10.2147/IJGM.S303348.
26. Andreucci M, Faga T, Riccio E, et al. The potential use of biomarkers in predicting contrast-induced acute kidney injury. Int J Nephrol Renovasc Dis. 2016;9:205-21. https://doi.org/10.2147/IJNRD.S105124.
27. Miao S, Xue ZK, Zhang YR, et al. Comparison of Different Hydration Strategies in Patients with Very Low- Risk Profiles of Contrast-Induced Nephropathy. Med Sci Monit. 2021;27:e929115. https://doi.org/10.12659/MSM.929115.
28. Cai L, Rubin J, Han W, et al. The origin of multiple molecular forms in urine of HNL/NGAL. Clin J Am Soc Nephrol. 2010;5(12):2229-35. https://doi.org/10.2215/CJN.00980110.
29. Charlton JR, Portilla D, Okusa MD. A basic science view of acute kidney injury biomarkers. Nephrol Dial Transplant 2014;29(7):1301-11. https://doi.org/10.1093/ndt/gft510.
30. Zhou F, Luo Q, Wang L, et al. Diagnostic value of neutrophil gelatinase-associated lipocalin for early diagnosis of cardiac surgery-associated acute kidney injury: a meta-analysis. Eur J Cardiothorac Surg. 2016;49(3):746-55. https://doi.org/10.1093/ejcts/ezv199.
31. Haase-Fielitz A, Haase M, Devarajan P. Neutrophil gelatinase-associated lipocalin as a biomarker of acute kidney injury: a critical evaluation of current status. Ann Clin Biochem. 2014;51(Pt 3):335-51. https://doi.org/10.1177/0004563214521795.
32. Ronco C. Biomarkers for acute kidney injury: is NGAL ready for clinical use? Crit Care. 2014;18(6):680. https://doi.org/10.1186/s13054-014-0680-0.
33. Clerico A, Galli C, Fortunato A, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as biomarker of acute kidney injury: a review of the laboratory characteristics and clinical evidences. Clin Chem Lab Med. 2012;50(9):1505-17. https://doi.org/10.1515/cclm-2011-0814.
34. Lupu L, Rozenfeld KL, Zahler D, et al. Detection of Renal Injury Following Primary Coronary Intervention among ST-Segment Elevation Myocardial Infarction Patients: Doubling the Incidence Using Neutrophil Gelatinase-Associated Lipocalin as a Renal Biomarker. J Clin Med. 2021;10(10):2120. https://doi.org/10.3390/jcm10102120.
35. da Veiga GL, da Costa Aguiar Alves B, Perez MM, et al. Kidney Diseases: The Age of Molecular Markers. Adv Exp Med Biol. 2021;1306:13-27. https://doi.org/10.1007/978-3-030-63908-2_2.
36. Quintavalle C, Anselmi CV, De Micco F, et al. Neutrophil gelatinase-associated lipocalin and contrast-induced acute kidney injury. Circ Cardiovasc Interv. 2015;8(9):e002673. https://doi.org/10.1161/CIRCINTERVENTIONS.115.002673.
37. Li Q, Huang Y, Shang W, et al. The Predictive Value of Urinary Kidney Injury Molecular 1 for the Diagnosis of Contrast-Induced Acute Kidney Injury after Cardiac Catheterization: A Meta-Analysis. J Interv Cardiol. 2020;2020:4982987. https://doi.org/10.1155/2020/4982987.
38. Sabbisetti VS, Ito K, Wang C, et al. Novel assays for detection of urinary KIM-1 in mouse models of kidney injury. Toxicol Sci. 2013;131(1):13-25. https://doi.org/10.1093/toxsci/kfs268.
39. Liao B, Nian W, Xi A, et al. Evaluation of a Diagnostic Test of Serum Neutrophil Gelatinase- Associated Lipocalin (NGAL) and Urine KIM-1 in Contrast-Induced Nephropathy (CIN). Med Sci Monit. 2019;25:565-70. https://doi.org/10.12659/MSM.912569.
40. Li W, Yu Y, He H, et al. Urinary Kidney injury molecule-1 as an early indicator to predict contrast induced acute Kidney injury in patients with diabetes mellitus undergoing percutaneous coronary intervention. Biomed Rep. 2015;3(4):509-12. https://doi.org/10.3892/br.2015.449.
41. Wybraniec MT, Chudek J, Bozentowicz-Wikarek M, et al. Prediction of contrast-induced acute kidney injury by early post-procedural analysis of urinary biomarkers and intra-renal Doppler flow indices in patients undergoing coronary angiography. J Interv Cardiol. 2017;30(5):465-72. https://doi.org/10.1111/joic.12404.
42. Altmann C, Andres-Hernando A, McMahan RH, et al. Macrophages mediate lung inflammation in a mouse model of ischemic acute kidney injury. Am J Physiol Renal Physiol. 2012;302(4):F421-32. https://doi.org/10.1152/ajprenal.00559.2010.
43. Lin X, Yuan J, Zhao Y, et al. Urine interleukin-18 in prediction of acute kidney injury: a systemic review and meta-analysis. J Nephrol. 2015;28(1):7-16. https://doi.org/10.1007/s40620-014-0113-9.
44. Banda J, Duarte R, Dix-Peek T, et al. Biomarkers for Diagnosis and Prediction of Outcomes in Contrast- Induced Nephropathy. Int J Nephrol. 2020;2020:8568139. https://doi.org/10.1155/2020/8568139.
45. He H, Li W, Qian W, et al. Urinary interleukin-18 as an early indicator to predict contrast-induced nephropathy in patients undergoing percutaneous coronary intervention. Exp Ther Med. 2014;8(4):1263-6. https://doi.org/10.3892/etm.2014.1898.
46. Rear R, Bell RM, Hausenloy DJ. Contrastinduced nephropathy following angiography and cardiac interventions. Heart. 2016 Apr;102(8):638-48. https://doi.org/10.1136/heartjnl-2014-306962.
47. Lichosik M, Jung A, Jobs K. Interleukin 18 and neutrophil-gelatinase associated lipocalin in assessment of the risk of contrast-induced nephropathy in children. Cent Eur J Immunol. 2015;40(4):447-53. https://doi.org/10.5114/ceji.2015.56967.
48. Roberts LM, Buford TW. Lipopolysaccharide binding protein is associated with CVD risk in older adults. Aging Clin Exp Res. 2021;33(6):1651-8. https://doi.org/10.1007/s40520-020-01684-z.
49. Fujita D, Takahashi M, https://doi.org/K, et al. Response of urinary liver-type fatty acid-binding protein to contrast media administration has a potential to predict oneyear renal outcome in patients with ischemic heart disease. Heart Vessels 2015;30(3):296-303. https://doi.org/10.1007/s00380-014-0484-9.
50. Hishikari K, Hikita H, Nakamura S, et al. Urinary Liver-Type Fatty Acid-Binding Protein Level as a Predictive Biomarker of Acute Kidney Injury in Patients with Acute Decompensated Heart Failure. Cardiorenal Med. 2017;7(4):267-75. https://doi.org/10.1159/000476002.
51. Menez S, Parikh CR. Assessing the health of the nephron in acute kidney injury: biomarkers of kidney function and injury. Curr Opin Nephrol Hypertens. 2019;28(6):560-6. https://doi.org/10.1097/MNH.0000000000000538.
52. Kamijo-Ikemori A, Hashimoto N, Sugaya T. Elevation of urinary liver-type fatty acid binding protein after cardiac catheterization related to cardiovascular events. Int J Nephrol Renovasc Dis 2015; 8: 91-99. https://doi.org/10.2147/IJNRD.S88467.
53. Qin C, Li M, Bai T, et al. Tisp40 deficiency limits renal inflammation and promotes tubular cell proliferation in renal ischemia reperfusion injury. Exp Cell Res 2018;371(1):255-261. https://doi.org/10.1016/j.yexcr.2018.08.019.
54. Sato W, Sato Y. Midkine in nephrogenesis, hypertension and kidney diseases. Br J Pharmacol 2014;171(4):879-887. https://doi.org/10.1111/bph.12418.
55. Malyszko J, Bachorzewska-Gajewska H, KocZorawska E. Midkine: a novel and early biomarker of contrast-induced acute kidney injury in patients undergoing percutaneous coronary interventions. Biomed Res Int 2015;2015:879509. https://doi.org/10.1155/2015/879509.
56. Schunk SJ, Zarbock A, Meersch M, et al. Association between urinary dickkopf-3, acute kidney injury,and subsequent loss of kidneyfunction in patients undergoing cardiac surgery: an observational cohort study. Lancet 2019;394(10197):488-496. https://doi.org/10.1016/S0140-6736(19)30769-X.
57. Zou YF, Zhang W. Role of microRNA in the detection, progression, and intervention of acute kidney injury. Exp Biol Med (Maywood). 2018;243(2):129-136. https://doi.org/10.1177/1535370217749472.
Рецензия
Для цитирования:
Лаврищева Ю.В., Конради А.О., Яковенко А.А. Потенциальные биомаркеры острого повреждения почек, вызванного контрастированием у пациентов, перенесших чрескожные коронарные вмешательства. Российский журнал персонализированной медицины. 2021;1(1):173-191.
For citation:
Lavrishcheva Yu.V., Konradi A.O., Yakovenko A.A. Potential biomarkers of contrastinduced acute kidney injury in patients undergoing percutaneous coronary intervention. Russian Journal for Personalized Medicine. 2021;1(1):173-191.
ISSN 2782-3814 (Online)