Potential biomarkers of contrastinduced acute kidney injury in patients undergoing percutaneous coronary intervention
Abstract
Currently, there is a continuous increase in the number of interventional interventions in cardiology using X-ray contrast agents (RKV), which often leads to such a formidable complication as contrast-induced acute kidney injury (CI-AKI). The manifestations of CIAKI have all the characteristics of acute renal injury (AKI) and include an absolute (greater than or equal to 0.3 or more or equal to 0.5 mg/dL) or relative (greater than or equal to 25%) increases in serum creatinine (sCr) compared with baseline values, occurring 48-72 hours after intravascular administration of RVC.
Contrast-induced acute kidney injury is a common complication following intravascular administration of iodine-containing contrast media and is associated with prolonged hospital stay and poor long-term prognosis, including unwanted cardiovascular events, and complete loss of renal function. CI-AKI occurs in 5-20% of hospitalized patients undergoing percutaneous coronary interventions.
Unfortunately, there are currently no analogues of iodine-containing RVC, and therefore the question of finding optimal CI-AKI biomarkers for the purpose of early diagnosis and prevention of this formidable complication remains relevant.
The diagnosis of CI-AKI is based on an increase in serum creatinine, which is a late biomarker of kidney damage. New and earlier serum and urinary biomarkers for the diagnosis of kidney damage have now been identified that can be detected before serum creatinine levels rise. This article provides information on the most relevant and modern biomarkers of CI-AKI.
About the Authors
Yu. V. LavrishchevaRussian Federation
Lavrischeva Yulia V., PhD, Senior Researcher, Research Laboratory of Pathogenesis and Therapy of Arterial Hypertension
Akkuratova str. 2, Saint Petersburg, Russia, 197341
A. O. Konradi
Russian Federation
Konradi Alexandra O., MD, Dr. Sc., Professor, Corresponding Member RAS, Deputy General Director for Research, Head of the Research Department of Arterial Hypertension, Head of the Department of Management Organization and Health Economics, Institute of Medical Education
Saint Petersburg
A. A. Yakovenko
Russian Federation
Yakovenko Alexander A., PhD, Associate Professor of the Department of Nephrology and Dialysis of the Faculty of Postgraduate Education
Saint Petersburg
References
1. Tehrani S, Laing C, Yellon DM, et al. Contrastinduced acute kidney injury following PCI. Eur J Clin Invest. 2013;43:483–90. DOI: 10.1111/eci.12061.
2. Santiago G, Byungsoo K, Selcuk A. Contrast- Induced Nephropathy and Risk of Acute Kidney Injury and Mortality After Cardiac Operations. The Annals of Thoracic Surgery. 2012;94(3):772–6. DOI: 10.1016/S0002-9343(97)00150-2.
3. Uchino S, Kellum JA, Bellomo R, et al. Acute renal failure in critically ill patients: a multinational, multicentre study. JAMA. 2005;294(7):813–8. DOI: 10.1001/jama.294.7.813.
4. McCullough PA, Shaw AD, Haase M, et al. Diagnosis of acute kidney injury using functional and injury biomarkers: workgroup statements from the tenth acute dialysis quality initiative consensus conference. Contrib Nephrol. 2013;182:13–29. DOI: 10.1159/000349963.
5. D’Amore C, Nuzzo S, Briguori C. Biomarkers of Contrast-Induced Nephropathy: Which Ones are Clinically Important? Intervent Cardiol Clin. 2020;9:335–44. DOI: 10.1016/j.iccl.2020.02.004.
6. Heyman SN, Rosen S, Rosenberger C. Renal parenchymal hypoxia, hypoxia adaptation, and the pathogenesis of radiocontrast nephropathy. Clin J Am Soc Nephrol. 2008;3(1):288–96. DOI: 10.2215/CJN.02600607.
7. Ferguson MA, Vaidya VS, Bonventre JV. Biomarkers of nephrotoxic acute kidney injury. Toxicology. 2008;245:182–93. DOI: 10.1016/j.tox.2007.12.024.
8. Chousterman BG, Bouadma L, Moutereau S, et al. Prevention of contrast-induced nephropathy by N-acetylcysteine in critically ill patients: different definitions, different results. J Crit Care. 2013;28(5):701-9. DOI: 10.1016/j.jcrc.2013.03.007.
9. Weyer K, Nielsen R, Petersen SV, et al. Renal uptake of 99mTc-dimercaptosuccinic acid is dependent on normal proximal tubule receptor-mediated endocytosis. J Nucl Med. 2013;54(1):159-65. DOI: 10.2967/jnumed.112.110528.
10. Ghys LF, Meyer E, Paepe D, et al. Analytical validation of a human particle-enhanced nephelometric assay for cystatin C measurement in feline serum and urine. Vet Clin Pathol. 2014;43(2):226-34. DOI: 10.1111/vcp.12144.
11. Obiols J, Bargnoux AS, Kuster N, et al. Validation of a new standardized cystatin C turbidimetric assay: evaluation of the three novel CKD-EPI equations in hypertensive patients. Clin Biochem. 2013;46(15):1542-7. DOI: 10.1016/j.clinbiochem.2013.05.056.
12. Schaeffner E. Determining the Glomerular Filtration Rate-An Overview. J Ren Nutr. 2017;27(6):375-80. DOI: 10.1053/j.jrn.2017.07.005.
13. Gaygısız Ü, Aydoğdu M, Badoğlu M, et al. Can admission serum cystatin C level be an early marker subclinical acute kidney injury in critical care patients? Scand J Clin Lab Invest. 2016;76(2):143-50. DOI: 10.3109/00365513.2015.1126854.
14. Shams E, Mayrovitz HN. Contrast-Induced Nephropathy: A Review of Mechanisms and Risks. Cureus. 2021;13(5):e14842. DOI: 10.7759/cureus.14842. 15. He Y, Deng Y, Zhuang K, et al. Predictive value of cystatin C and neutrophil gelatinase-associated lipocalin in contrast-induced nephropathy: A meta-analysis. PLoS One. 2020;15(4):e0230934. DOI: 10.1371/journal.pone.0230934.
15. Wang ZY, Wang YL, Wei J, et al. Role of serum cystatin C in the prediction of contrast-induced nephropathy after intra-arterial interventions. Chin Med J (Engl). 2020;133(4):408-414. DOI: 10.1097/CM9.0000000000000641.
16. Briguori C, Quintavalle C, Donnarumma E, et al. Novel biomarkers for contrast-induced acute kidney injury. Biomed Res Int 2014;2014:568738. DOI: 10.1155/2014/568738.
17. Coppolino G, Comi N, Bolignano D, et al. Urinary Neutrophil Gelatinase-Associated Lipocalin (NGAL) Predicts Renal Function Decline in Patients With Glomerular Diseases. Front Cell Dev Biol. 2020;8:336. DOI: 10.3389/fcell.2020.00336.
18. de Bhailís ÁM, Chrysochou C, Kalra PA. Inflammation and Oxidative Damage in Ischaemic Renal Disease. Antioxidants (Basel). 2021;10(6):845. DOI: 10.3390/antiox10060845.
19. Paragas N, Qiu A, Hollmen M, et al. NGAL-Siderocalin in kidney disease. Biochim Biophys Acta. 2012;1823(9):1451-8. doi:10.1016/j.bbamcr.2012.06.014
20. Briguori C, Visconti G, Rivera NV, et al. Cystatin C and contrast-induced acute kidney injury. Circulation. 2010;121(19):2117–22. DOI: 10.1161/CIRCULATIONAHA.109.919639.
21. Andreucci M, Faga T, Riccio E, et al. The potential use of biomarkers in predicting contrast-induced acute kidney injury. Int J Nephrol Renovasc Dis. 2016;9:205-21. DOI: 10.2147/IJNRD.S105124.
22. Dalili N, Chashmniam S, Khoormizi SMH, et al. Urine and serum NMR-based metabolomics in preprocedural prediction of contrast-induced nephropathy. Intern Emerg Med. 2020;15(1):95-103. DOI: 10.1007/s11739-019-02128-x.
23. Li S, Zheng Z, Tang X. Preprocedure and postprocedure predictive values of serum b2-microglobulin for contrast-induced nephropathy in patients undergoing coronary computed tomography angiography: a comparison with creatinine-based parameters and cystatin C. J Comput Assist Tomogr. 2015;39(6):969–74. DOI: 10.1097/RCT.0000000000000294.
24. Ahmed K, McVeigh T, Cerneviciute R, et al. Effectiveness of contrast-associated acute kidney injury prevention methods; a systematic review and network meta-analysis. BMC Nephrol. 2018;19(1):323. DOI: 10.1186/s12882-018-1113-0.
25. Yao YL, Gao Y. Present Situation and Research Progress of Kidney Function Recoverability Evaluation of Acute Kidney Injury Patient. Int J Gen Med. 2021;14:1919-1925. DOI: 10.2147/IJGM.S303348.
26. Andreucci M, Faga T, Riccio E, et al. The potential use of biomarkers in predicting contrast-induced acute kidney injury. Int J Nephrol Renovasc Dis. 2016;9:205-21. DOI: 10.2147/IJNRD.S105124.
27. Miao S, Xue ZK, Zhang YR, et al. Comparison of Different Hydration Strategies in Patients with Very Low- Risk Profiles of Contrast-Induced Nephropathy. Med Sci Monit. 2021;27:e929115. DOI: 10.12659/MSM.929115.
28. Cai L, Rubin J, Han W, et al. The origin of multiple molecular forms in urine of HNL/NGAL. Clin J Am Soc Nephrol. 2010;5(12):2229–35. DOI: 10.2215/CJN.00980110.
29. Charlton JR, Portilla D, Okusa MD. A basic science view of acute kidney injury biomarkers. Nephrol Dial Transplant 2014;29(7):1301–11. DOI: 10.1093/ndt/gft510.
30. Zhou F, Luo Q, Wang L, et al. Diagnostic value of neutrophil gelatinase-associated lipocalin for early diagnosis of cardiac surgery-associated acute kidney injury: a meta-analysis. Eur J Cardiothorac Surg. 2016;49(3):746-55. DOI: 10.1093/ejcts/ezv199.
31. Haase-Fielitz A, Haase M, Devarajan P. Neutrophil gelatinase-associated lipocalin as a biomarker of acute kidney injury: a critical evaluation of current status. Ann Clin Biochem. 2014;51(Pt 3):335-51. DOI: 10.1177/0004563214521795.
32. Ronco C. Biomarkers for acute kidney injury: is NGAL ready for clinical use? Crit Care. 2014;18(6):680. DOI: 10.1186/s13054-014-0680-0.
33. Clerico A, Galli C, Fortunato A, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as biomarker of acute kidney injury: a review of the laboratory characteristics and clinical evidences. Clin Chem Lab Med. 2012;50(9):1505–17. DOI: 10.1515/cclm-2011-0814.
34. Lupu L, Rozenfeld KL, Zahler D, et al. Detection of Renal Injury Following Primary Coronary Intervention among ST-Segment Elevation Myocardial Infarction Patients: Doubling the Incidence Using Neutrophil Gelatinase-Associated Lipocalin as a Renal Biomarker. J Clin Med. 2021;10(10):2120. DOI: 10.3390/jcm10102120.
35. da Veiga GL, da Costa Aguiar Alves B, Perez MM, et al. Kidney Diseases: The Age of Molecular Markers. Adv Exp Med Biol. 2021;1306:13-27. DOI: 10.1007/978-3-030-63908-2_2.
36. Quintavalle C, Anselmi CV, De Micco F, et al. Neutrophil gelatinase-associated lipocalin and contrast-induced acute kidney injury. Circ Cardiovasc Interv. 2015;8(9):e002673. DOI: 10.1161/CIRCINTERVENTIONS.115.002673.
37. Li Q, Huang Y, Shang W, et al. The Predictive Value of Urinary Kidney Injury Molecular 1 for the Diagnosis of Contrast-Induced Acute Kidney Injury after Cardiac Catheterization: A Meta-Analysis. J Interv Cardiol. 2020;2020:4982987. DOI: 10.1155/2020/4982987.
38. Sabbisetti VS, Ito K, Wang C, et al. Novel assays for detection of urinary KIM-1 in mouse models of kidney injury. Toxicol Sci. 2013;131(1):13-25. DOI: 10.1093/toxsci/kfs268.
39. Liao B, Nian W, Xi A, et al. Evaluation of a Diagnostic Test of Serum Neutrophil Gelatinase- Associated Lipocalin (NGAL) and Urine KIM-1 in Contrast-Induced Nephropathy (CIN). Med Sci Monit. 2019;25:565-70. DOI: 10.12659/MSM.912569.
40. Li W, Yu Y, He H, et al. Urinary Kidney injury molecule-1 as an early indicator to predict contrast induced acute Kidney injury in patients with diabetes mellitus undergoing percutaneous coronary intervention. Biomed Rep. 2015;3(4):509–12. DOI: 10.3892/br.2015.449.
41. Wybraniec MT, Chudek J, Bozentowicz-Wikarek M, et al. Prediction of contrast-induced acute kidney injury by early post-procedural analysis of urinary biomarkers and intra-renal Doppler flow indices in patients undergoing coronary angiography. J Interv Cardiol. 2017;30(5):465–72. DOI: 10.1111/joic.12404.
42. Altmann C, Andres-Hernando A, McMahan RH, et al. Macrophages mediate lung inflammation in a mouse model of ischemic acute kidney injury. Am J Physiol Renal Physiol. 2012;302(4):F421-32. DOI: 10.1152/ajprenal.00559.2010.
43. Lin X, Yuan J, Zhao Y, et al. Urine interleukin-18 in prediction of acute kidney injury: a systemic review and meta-analysis. J Nephrol. 2015;28(1):7-16. DOI: 10.1007/s40620-014-0113-9.
44. Banda J, Duarte R, Dix-Peek T, et al. Biomarkers for Diagnosis and Prediction of Outcomes in Contrast- Induced Nephropathy. Int J Nephrol. 2020;2020:8568139. DOI: 10.1155/2020/8568139.
45. He H, Li W, Qian W, et al. Urinary interleukin-18 as an early indicator to predict contrast-induced nephropathy in patients undergoing percutaneous coronary intervention. Exp Ther Med. 2014;8(4):1263–6. DOI: 10.3892/etm.2014.1898.
46. Rear R, Bell RM, Hausenloy DJ. Contrastinduced nephropathy following angiography and cardiac interventions. Heart. 2016 Apr;102(8):638-48. DOI: 10.1136/heartjnl-2014-306962.
47. Lichosik M, Jung A, Jobs K. Interleukin 18 and neutrophil-gelatinase associated lipocalin in assessment of the risk of contrast-induced nephropathy in children. Cent Eur J Immunol. 2015;40(4):447–53. DOI: 10.5114/ceji.2015.56967.
48. Roberts LM, Buford TW. Lipopolysaccharide binding protein is associated with CVD risk in older adults. Aging Clin Exp Res. 2021;33(6):1651-8. DOI: 10.1007/s40520-020-01684-z.
49. Fujita D, Takahashi M, Doi K, et al. Response of urinary liver-type fatty acid-binding protein to contrast media administration has a potential to predict oneyear renal outcome in patients with ischemic heart disease. Heart Vessels 2015;30(3):296–303. DOI: 10.1007/s00380-014-0484-9.
50. Hishikari K, Hikita H, Nakamura S, et al. Urinary Liver-Type Fatty Acid-Binding Protein Level as a Predictive Biomarker of Acute Kidney Injury in Patients with Acute Decompensated Heart Failure. Cardiorenal Med. 2017;7(4):267-75. DOI: 10.1159/000476002.
51. Menez S, Parikh CR. Assessing the health of the nephron in acute kidney injury: biomarkers of kidney function and injury. Curr Opin Nephrol Hypertens. 2019;28(6):560-6. DOI: 10.1097/MNH.0000000000000538.
52. Kamijo-Ikemori A, Hashimoto N, Sugaya T. Elevation of urinary liver-type fatty acid binding protein after cardiac catheterization related to cardiovascular events. Int J Nephrol Renovasc Dis 2015; 8: 91–99. DOI: 10.2147/IJNRD.S88467.
53. Qin C, Li M, Bai T, et al. Tisp40 deficiency limits renal inflammation and promotes tubular cell proliferation in renal ischemia reperfusion injury. Exp Cell Res 2018;371(1):255-261. DOI: 10.1016/j.yexcr.2018.08.019.
54. Sato W, Sato Y. Midkine in nephrogenesis, hypertension and kidney diseases. Br J Pharmacol 2014;171(4):879-887. DOI: 10.1111/bph.12418.
55. Malyszko J, Bachorzewska-Gajewska H, KocZorawska E. Midkine: a novel and early biomarker of contrast-induced acute kidney injury in patients undergoing percutaneous coronary interventions. Biomed Res Int 2015;2015:879509. DOI: 10.1155/2015/879509.
56. Schunk SJ, Zarbock A, Meersch M, et al. Association between urinary dickkopf-3, acute kidney injury,and subsequent loss of kidneyfunction in patients undergoing cardiac surgery: an observational cohort study. Lancet 2019;394(10197):488–496. DOI: 10.1016/S0140-6736(19)30769-X.
57. Zou YF, Zhang W. Role of microRNA in the detection, progression, and intervention of acute kidney injury. Exp Biol Med (Maywood). 2018;243(2):129-136. DOI: 10.1177/1535370217749472.
Review
For citations:
Lavrishcheva Yu.V., Konradi A.O., Yakovenko A.A. Potential biomarkers of contrastinduced acute kidney injury in patients undergoing percutaneous coronary intervention. Russian Journal for Personalized Medicine. 2021;1(1):173-191.