Preview

Российский журнал персонализированной медицины

Расширенный поиск

Поражение ЦНС, ассоциированное с новой коронавирусной инфекцией у детей: обзор литературы и описание клинического случая

https://doi.org/10.18705/2782-3806-2023-3-2-46-56

Аннотация

В последнее время увеличилось число сообщений и клинических наблюдений различных иммуноопосредованных заболеваний у детей, возникающих после COVID-19, в том числе с поражением центральной нервной системы. Настоящий обзор кратко освещает современные знания о возникающих неврологических заболеваниях у детей после перенесенной инфекции, вызванной COVID-19, с описанием редкого постковидного явления по типу PANS-синдрома у ребенка, получавшего лечение в нашем центре.

Об авторах

Н. А. Любимова
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В.А. Алмазова» Министерства здравоохранения Российской Федерации
Россия

Любимова Наталья Андреевна - кандидат медицинских наук, врач-ревматолог отделения педиатрии и медицинской реабилитации для детей № 1.

Ул. Аккуратова, д. 2, Санкт-Петербург, 197341.



Т. М. Первунина
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В.А. Алмазова» Министерства здравоохранения Российской Федерации
Россия

Первунина Татьяна Михайловна - доктор медицинских наук, директор Института перинатологии и педиатрии, врач-педиатр.

Санкт-Петербург



К. А. Сеель
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В.А. Алмазова» Министерства здравоохранения Российской Федерации
Россия

Сеель Кристина Артуровна - врач-невролог амбулаторно-консультативного отделения для детей.

Санкт-Петербург



М. М. Костик
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В.А. Алмазова» Министерства здравоохранения Российской Федерации; Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный педиатрический медицинский университет» Министерства здравоохранения Российской Федерации
Россия

Костик Михаил Михайлович - доктор медицинских наук, профессор кафедры госпитальной педиатрии.

Санкт-Петербург



Список литературы

1. Song C, Li Z, Li C, et al. SARS-CoV-2: The Monster Causes COVID-19. Front. Cell. Infect. Microbiol. 2022; 12:835750.

2. Chang R, Yen-Ting Chen T, Wang S-I, et al. Risk of autoimmune diseases in patients with COVID-19: A retrospective cohort study. EClinicalMedicine. 2023 Feb;56:101783.

3. Stefano LD, Rossi S, Montecucco C, et al. Transient monoarthritis and psoriatic skin lesions following COVID-19. [published online August 4, 2020]. Ann Rheum Dis.

4. Ian Yang Liew, Tze Minn Mak, Lin Cui, et al. A case of reactive arthritis secondary to Coronavirus Disease 2019 infection. J Clin Rheumatol. 2020;26(6):233–233.

5. Ono K, Kishimoto M, Shimasaki T, et al. Reactive arthritis after COVID-19 infection. RMD Open. 2020;6(2):e001350.

6. Novelli L, Motta F, Ceribelli A, et al. A case of psoriatic arthritis triggered by SARS-CoV-2 infection. Rheumatology (Oxford). 2020;60(1):e21–e23.

7. Ying Jie Chee, Shereen Jia Huey Ng, Ester Yeoh, et al. Diabetic ketoacidosis precipitated by Covid-19 in a patient with newly diagnosed diabetes mellitus. Diabetes Res Clin Pract. 2020;164:108166.

8. Talarico R, Stagnaro C, Ferro F, et al. Symmetric peripheral polyarthritis developed during SARS-CoV-2 infection. Lancet Rheumatol. 2020;2(9):e518–e519.

9. Saricaoglu EM, Hasanoglu I, Guner R, et al. The first reactive arthritis case associated with COVID-19. J Med Virol. 2021;93(1):192–193.

10. Yokogawa N, Minematsu N, Katano H, et al. Case of acute arthritis following SARS-CoV-2 infection. Ann Rheum Dis. 2021;80(6):e101.

11. López-González M-D-C, Jovani V, Merino E, et al. Comparative analysis of synovial inflammation after SARS-CoV-2 infection. Ann Rheum Dis. 2021;80(6):e91.

12. Novelli L, Motta F, De Santis M, et al. The JANUS of chronic inflammatory and autoimmune diseases onset during COVID-19 — a systematic review of the literature. J Autoimmun. 2020;117:102592.

13. Rodríguez Y, Novelli L, Rojas M, et al. Autoinflammatory and autoimmune conditions at the crossroad of COVID-19. J Autoimmun. 2020;114:102506.

14. Giannini M, Ohana M, Nespola B, et al. Similarities between COVID-19 and anti-MDA5 syndrome: what can we learn for better care? Eur Respir J. 2020;56(3):2001618.

15. Yukai Wang, Guangzhou Du, Guohong Zhang, et al. Similarities and differences between severe COVID-19 pneumonia and anti-MDA-5-positive dermatomyositisassociated rapidly progressive interstitial lung diseases: a challenge for the future. [published online August 5, 2020]. Ann Rheum Dis.

16. Koyuncu OO, Hogue IB, Enquist LW, et al. Virus infections in the nervous system. Cell Host Microbe. 2013 Apr 17;13(4):379–93.

17. Netland J, Meyerholz DK, Moore S, et al. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008 Aug;82(15):7264–75.

18. Murthy S, Gomersall CD, Fowler RA. Care for Critically Ill Patients With COVID-19. JAMA. 2020 Apr 21;323(15):1499–1500.

19. Lechien JR, Chiesa-Estomba CM, De Siati DR, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol. 2020 Aug;277(8):2251–2261.

20. Coolen T, Lolli V, Sadeghi N, et al. Early postmortem brain MRI findings in COVID-19 nonsurvivors. Neurology. 2020 Oct 6;95(14):e2016–e2027.

21. Ziegler CGK, Allon SJ, Nyquist SK, et al. HCA Lung Biological Network. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell. 2020 May 28;181(5):1016–1035.e19.

22. Borczuk AC, Yantiss RK. The pathogenesis of coronavirus-19 disease. J Biomed Sci 29, 87 (2022).

23. Wang EY, Mao T, Klein J, et al. Diverse functional autoantibodies in patients with COVID-19. Nature. 2021;595(7866):283–288.

24. Ramani A, Müller L, Ostermann PN, et al. SARS-CoV-2 targets neurons of 3D human brain organoids. EMBO J. (2020) 39:e106230.

25. 25. Song E, Zhang C, Israelow B, LuCulligan A, et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med. (2021) 218:e20202135.

26. Rankovic M, Zweckstetter M. Upregulated levels and pathological aggregation of abnormally phosphorylated Tau-protein in children with neurodevelopmental disorders. Neurosci Biobehav Rev. 2019 Mar;98:1–9.

27. Yuan A, Nixon RA. (2021) Neurofilament Proteins as Biomarkers to Monitor Neurological Diseases and the Efficacy of Therapies. Front. Neurosci. 15:689938.

28. Hol EM, Pekny M. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol. 2015 Feb;32:121–30.

29. Kanberg N, Ashton NJ, Andersson LM, et al. Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID-19. Neurology. 2020;9 5(12):e1754–e1759.

30. Song E, Bartley CM, Chow RD, et al. Divergent and self-reactive immune responses in the CNS of COVID-19 patients with neurological symptoms. Cell Rep Med. (2021) 2:100288.

31. Soriano JB, Murthy S, Marshall JC, et al. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect.

32. Stephenson T, Shafran R, De Stavola B, et al. Long COVID and the mental and physical health of children and young people: national matched cohort study protocol (the CLoCk study). BMJ Open. (2021) 11:e052838.

33. Asadi-Pooya AA, Nemati H, Shahisavandi M, et al. Long COVID in children and adolescents. World J Pediatr. (2021) 17:495–9;

34. Brackel CLH, Lap CR, Buddingh EP, etal. Pediatric long-COVID: an overlooked phenomenon? Pediatr Pulmonol. (2021) 56:2495–502.

35. Lopez-Leon S, Wegman-Ostrosky T, del Valle CA, et al. Long COVID in children and adolescents: a systematic review and meta-analyses. medRxiv. (2022).

36. Behnood SA, Shafran R, Bennett SD, et al. Persistent symptoms following SARS-CoV-2 infection amongst children and young people: A meta-analysis of controlled and uncontrolled studies. J Infect. 2022 Feb;84(2):158–170.

37. Kikkenborg Berg S, Dam Nielsen S, Nygaard U, et al. Long COVID symptoms in SARS-CoV-2-positive adolescents and matched controls (LongCOVIDKidsDK): A national, cross-sectional study. Lancet Child Adolesc. Health.

38. Borch L, Holm M, Knudsen M, et al. Long COVID symptoms and duration in SARS-CoV-2 positive children — A nationwide cohort study. Eur. J. Pediatr.

39. Lopez-Leon S, Wegman-Ostrosky T, Perelman C, et al. More than 50 long-term effects of COVID-19: a systematic review and meta-analysis. Sci Rep 11, 16144 (2021).

40. Nalbandian A, Sehgal K, Gupta A, et al. Postacute COVID-19 syndrome. Nat. Med. 27, 601–615. https://doi.org/10.1038/s41591-021-01283-z(2021).,

41. Izquierdo-Pujol J, Moron-Lopez S, Dalmau J, et al. (2022) Post COVID-19 Condition in Children and Adolescents: An Emerging Problem. Front. Pediatr. 10:894204.

42. Ray STJ, Abdel-Mannan O, Sa M, et al. Neurological manifestations of SARS-CoV-2 infection in hospitalised children and adolescents in the UK: a prospective national cohort study. Lancet Child Adolesc Health 2021; published online July 14.

43. Assunção FB, Fragoso DC, Donoso Scoppetta TL, et al. COVID-19-associated acute disseminated encephalomyelitis-like disease. AJNR Am J Neuroradiol. 2021;42:0–3.

44. de Miranda Henriques-Souza AM, de Melo AC, de Aguiar Coelho Silva Madeiro B, et al. Acute disseminated encephalomyelitis in a COVID-19 pediatric patient.. Neuroradiology. 2021;63:141–145.

45. McLendon LA, Rao CK, Da Hora CC, et al. PostCOVID-19 acute disseminated encephalomyelitis in a 17-month-old. Pediatrics. 2021;147:0.

46. Kaur H, Mason JA, Bajracharya M, et al. Transverse myelitis in a child with COVID-19. Pediatr Neurol. 2020;112:5–6.

47. de Ruijter NS, Kramer G, Gons RA, et al. Neuromyelitis optica spectrum disorder after presumed coronavirus (COVID-19) infection: a case report. 2020;46:102474.

48. Khan A, Panwala H, Ramadoss D, et al. Myelin oligodendrocyte glycoprotein (MOG) antibody disease in a 11 year old with COVID-19 infection.. Indian J Pediatr. 2021;88:488–489.

49. Khair AM, Nikam R, Husain S, et al. Para and Post-COVID-19 CNS Acute Demyelinating Disorders in Children: A Case Series on Expanding the Spectrum of Clinical and Radiological Characteristics. Cureus. 2022 Mar 22;14(3):e23405.

50. Singer H, Mink J, Gilbert D, et al. Movement Disorders in Childhood, 2nd ed.; Elsevier: London, UK, 2016; pp. 40–55.

51. Augustine F, Singer HS. Merging the Pathophysiology and Pharmacotherapy of Tics. Tremor Other Hyperkinet. Mov. 2019, 8, 595.

52. Nielsen AN, Gratton C, Church JA, et al. Atypical Functional Connectivity in Tourette Syndrome Differs Between Children and Adults. Biol. Psychiatry 2020, 87, 164–173.

53. Yael D, Vinner E, Bar-Gad I. Pathophysiology of tic disorders. Mov. Disord. 2015, 30, 1171–1178.

54. Hoekstra P, Kallenberg C, Korf J, et al. Is Tourette’s syndrome an autoimmune disease? Mol Psychiatry 7, 437–445 (2002).

55. Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat. Rev. Immunol. 2012;12(9):623–635.

56. Negi N, Das BK. CNS: not an immunoprivilaged site anymore but a virtual secondary lymphoid organ. Int. Rev. Immunol. 2018;37(1):57–68.

57. Verheijden S, Boeckxstaens GE. Neuroimmune interaction and the regulation of intestinal immune homeostasis. Am. J. Physiol. Gastrointes. Liver Physiol. 2018;314(1):G75–G80.

58. Hodo TW, et al. Critical neurotransmitters in the neuroimmune network. Front. Immunol. 2020;11:1869.

59. Kipnis J. Multifaceted interactions between adaptive immunity and the central nervous system. Science. 2016;353(6301):766–771.

60. Chavan SS, Pavlov VA, Tracey KJ. Mechanisms and therapeutic relevance of neuro-immune communication. Immunity. 2017;46(6):927–942.

61. Leisman G, Sheldon D. Tics and Emotions. Brain Sci. 2022 Feb 10;12(2):242.

62. Schilke ED, Tremolizzo L, Appollonio I, et al. Tics: neurological disorders determined by a deficit in sensorimotor gating processes. Neurol Sci 43.

63. Nataf S. An alteration of the dopamine synthetic pathway is possibly involved in the pathophysiology of COVID-19. J Med Virol. 2020.

64. Antonini A, Leta V, Teo J, et al. Outcome of Parkinson’s disease patients affected by COVID-19. Mov Disord. 2020;35(6):905–908.

65. Snider LA, Seligman LD, Ketchen BR, et al. Tics and problem behaviors in schoolchildren: Prevalence, characterization, and associations. Pediatrics. 2002, 110, 331–336.

66. Knight T, Steeves T, Day L, et al. Prevalence of tic disorders: A systematic review and meta-analysis. Pediatr. Neurol.2012, 47, 77–90.

67. Stefanoff P, Wolanczyk T, Gawrys A, et al. Prevalence of tic disorders among schoolchildren in Warsaw, Poland. Eur. Child Adolesc. Psychiatry. 2008, 17, 171–178.

68. Thomsen BLC, Teodoro T, Edwards MJ. Biomarkers in functional movement disorders: a systematic review. Journal of Neurology, Neurosurgery & Psychiatry. 2020;91: 1261–1269.

69. Yu HH, Lee JH, Wang LC, et al. Neuropsychiatric manifestations in pediatric systemic lupus erythematosus: a 20-year study. Lupus 2006; 15(10): 651–657.

70. Saloua Mrabet, Hanene Benrhouma, Ichraf Kraoua. Mixed movements disorders as an initial feature of pediatric lupus. Brain and Development, Vol. 37, Issue 9, 2015, P. 904–906.

71. Illán Ramos M, Sagastizabal Cardelús B, García Ron A, et al. Chorea as the presenting feature of acute rheumatic fever in childhood; case reports from a lowprevalence European setting. BMC Infect Dis 21, 322 (2021).

72. Prato A, Gulisano M, Scerbo M, et al. (2021) Diagnostic Approach to Pediatric Autoimmune Neuropsychiatric Disorders Associated With Streptococcal Infections (PANDAS): A Narrative Review of Literature Data. Front. Pediatr. 9:746639.

73. Костик И.А., Костик М.М. Современные подходы к диагностике и лечению PANS/PANDAS. Вопросы современной педиатрии. 2019;18(5):324–338].

74. Shin YW, Lee ST, Shin JW, et al. VGKCcomplex/LGI1-antibody encephalitis: clinical manifestations and response to immunotherapy. J Neuroimmunol. 2013;265(1–2):75–81.

75. Fearon C, O’Toole O. Autoimmune movement disorders. Semin Neurol. 2018;38(3):316–329.

76. Tajudin T, Heng H, Khoo T, et al. Clinical spectrum of anti-NMDAR encephalitis — a review of a Malaysian series. Dev Med Child Neurol. 2012;54(S4):140.

77. Berkeley RP, Sohoni A. An 11-year-old female with altered mental status, speech changes, and abnormal jerking movements. Acad Emerg Med. 2010;17(7):723–728.

78. Safadieh L, Dabbagh O. Anti-N-methyl-Daspartate (NMDA) receptor encephalitis in a young Lebanese girl. J Child Neurol. 2013;28(10):1222–1225.

79. Radja GK, Cavanna AE. Treatment of VGKC complex antibody-associated limbic encephalitis: a systematic review. J Neuropsychiatry Clin Neurosci. 2013;25(4):264–271.

80. Mohammad SS, Fung VSC, Grattan-Smith P, et al. Movement disorders in children with anti-NMDAR encephalitis and other autoimmune encephalopathies. Mov Disord. 2014;29(12):1539–1542.

81. Tajul A, Heng H, Khoo T, et al. An uncommon cause of acute paediatric movement disorder: a case report of two patients with autoimmune encephalitis. Mov Disord. 2011;26(Suppl 2):48.

82. Xiong W, Mu J, Guo J, et al. New onset neurologic events in people with COVID-19 in 3 regions in China. Neurology. 2020;95:e1479–87.

83. Garg A, Goyal S, Comellas AP. Post-acute COVID-19 functional movement disorder. SAGE Open Med Case Rep. 2021;9:2050313X211039377.

84. Piscitelli D, Perin C, Tremolizzo L, et al. Functional movement disorders in a patient with COVID-19. Neurol Sci. 2020;41:2343–4.

85. Savino R, Polito AN, Arcidiacono G, et al. Neuropsychiatric Disorders in Pediatric Long COVID-19: A Case Series. Brain Sci. 2022 Apr 19;12(5):514.

86. Pavone P, Ceccarelli M, Marino S, et al. SARSCoV-2 related paediatric acute-onset neuropsychiatric syndrome. Lancet Child Adolesc. Health 2021, 5, e19– e21.

87. Ayşegül Efe. SARS-CoV-2/COVID-19 associated pediatric acute-onset neuropsychiatric syndrome a case report of female twin adolescents. Psychiatry Research Case Reports. Volume 1, Issue 2, December 2022, 100074.


Рецензия

Для цитирования:


Любимова Н.А., Первунина Т.М., Сеель К.А., Костик М.М. Поражение ЦНС, ассоциированное с новой коронавирусной инфекцией у детей: обзор литературы и описание клинического случая. Российский журнал персонализированной медицины. 2023;3(2):46-56. https://doi.org/10.18705/2782-3806-2023-3-2-46-56

For citation:


Lyubimova N.A., Pervunina T.M., Ciel K.A., Kostik M.M. А new coronavirus infection associated CNS involvement in children: literature review and clinical case description. Russian Journal for Personalized Medicine. 2023;3(2):46-56. (In Russ.) https://doi.org/10.18705/2782-3806-2023-3-2-46-56

Просмотров: 479


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2782-3806 (Print)
ISSN 2782-3814 (Online)