The role of multi-omics technologies and genetic analysis in the diagnosis and prediction of cardiovascular diseases
https://doi.org/10.18705/2782-3806-2022-2-2-6-16
Abstract
Risk factor identification and their subsequent reduction is one of the fundamental strategies in cardiovascular disease prevention and treatment (CVD). Any biological mechanism comprises many crucial elements which ensure its function. Thorough cross-level molecular assessment is required in order to obtain relevant information, therefore gaining insight into disease pathogenesis. Numerous advances in the identification of CVD associated biomarkers have undoubtedly expanded our understanding. However, lifestyle, environmental factors and genetic predisposition are ought to be taken into account. Given the presence of numerous factors affecting the course of CVD, there is a demand for new sensitive diagnostic methods. One of those new approaches is the usage of omics technologies, which make it possible to obtaina large array of biological data at the molecular level. Integration of various methods helps to accumulate a colossal amount of data. High-tech tools for data analysis, such as artificial intelligence and machine learning ensure the identification of interrelated significant data between variables. Multi-omics technologies in combination with genetic analysis are attracting more attention worldwide. It can be perceived as a new stage in CVD prediction and recurrent cardiovascular events risk assessment. These approaches can help to improve our understanding of the molecular genetic pathology of CVD and provide an objective evaluation of pathophysiological processes.
About the Authors
E. I. UsovaRussian Federation
Elena I. Usova, MD, junior researcher, research laboratory
laboratory of lipid disorders and atherosclerosis
197314
Akkuratova str., 2
Saint Petersburg
A. S. Alieva
Russian Federation
Asiiat S. Alieva, MD, PhD, Head of laboratory
laboratory of lipid disorders and atherosclerosis
Saint Petersburg
A. N. Yakovlev
Russian Federation
Alexey N. Yakovlev, Candidate of Medical Sciences, Head of the Service, Head of the NIL Service
Federal State Budgetary Institution "V. A. Almazov National Medical Research Center", World-class Scientific Center "Center for Personalized Medicine"
Department for the Implementation of Federal Projects
regional health Development Service
NIL technologies for predicting the risks of cardiovascular complications
Saint-Petersburg
T. A. Makarova
Russian Federation
Tayana A. Makarova, laboratory researcher
Federal State Budgetary Institution "V. A. Almazov National Medical Research Center", World-class Scientific Center "Center for Personalized Medicine"
NIL technologies for predicting the risk of cardiovascular complications
Saint-Petersburg
M. S. Alieva
Russian Federation
Madina S. Aliyeva, anesthesiologist-resuscitator
Federal State Budgetary Institution "V. A. Almazov National Medical Research Center", World-class Scientific Center "Center for Personalized Medicine"
Saint-Petersburg
A. O. Konradi
Russian Federation
Alexandra O. Konradi, MD, Professor, Corresponding Member of the Russian Academy of Sciences, Deputy Director General for Scientific Work, Head of the Research Institute, Head of the Department
Federal State Budgetary Institution "V. A. Almazov National Medical Research Center", World-class Scientific Center "Center for Personalized Medicine"
Institute of Heart and Blood Vessels
Research Institute of Arterial hypertension
Institute of Medical Education
Department of Management Organization and Health Economics
Saint-Petersburg
A. L. Catapano
Italy
Alberico Catapano, Professor of Pharmacology, Director of Centers, Director of the Laboratory
Faculty of Pharmacological and Biomolecular Sciences
laboratory for the study of lipoproteins, immunity and atherosclerosis
center of Epidemiology and preventive Pharmacology
center for the study of atherosclerosis
20133
Milan
20099
Sesto San Giovanni
E. V. Shlyakhto
Russian Federation
Evgeny V. Shlyakhto, MD, Professor, Academician of the Russian Academy of Sciences, General Director, Director
Federal State Budgetary Institution "V. A. Almazov National Medical Research Center", World-class Scientific Center "Center for Personalized Medicine"
References
1. Brian A Ference, How to use Mendelian randomization to anticipate the results of randomized trials, European Heart Journal, Volume 39, Issue 5, 01 February 2018, Pages 360–362, https://doi.org/10.1093/eurheartj/ehx462
2. Ference BA, Bhatt DL, Catapano AL, et al. Association of Genetic Variants Related to Combined Exposure to Lower Low-Density Lipoproteins and Lower Systolic Blood Pressure WithLifetime Risk of Cardiovascular Disease. JAMA. 2019;322(14):1381-1391. doi:10.1001/jama.2019.14120
3. Vrablik M, Dlouha D, Todorovova V, et al. Genetics of Cardiovascular Disease: How Far Are We from Personalized CVD Risk Prediction and Management? Int J Mol Sci. 2021 Apr 17;22(8):4182. doi: 10.3390/ijms22084182.
4. Piñero J, Queralt-Rosinach N, Bravo À, et al. DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database (Oxford). 2015 Apr 15;2015:bav028. doi: 10.1093/database/bav028.
5. Patel RS, Asselbergs FW, Quyyumi AA, et al. Genetic variants at chromosome 9p21 and risk of first versus subsequent coronary heart disease events: a systematic review and meta-analysis. J Am Coll Cardiol. 2014 Jun 3;63(21):2234-45. doi: 10.1016/j.jacc.2014.01.065.
6. Patel RS, Schmidt AF, Tragante V, et al. Association of Chromosome 9p21 With Subsequent Coronary Heart Disease Events. Circ Genom Precis Med. 2019 Apr;12(4):e002471. doi: 10.1161/CIRCGEN.119.002471.
7. Musunuru K, Kathiresan S. Genetics of Common, Complex Coronary Artery Disease. Cell. 2019 Mar 21;177(1):132-145. doi: 10.1016/j.cell.2019.02.015.
8. Khera, A.V., Chaffin, M., Aragam, K.G. et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet 50, 1219–1224 (2018). https://doi.org/10.1038/s41588-018-0183-z
9. Li Y, Cho H, Wang F, et al. Statistical and Functional Studies Identify Epistasis of Cardiovascular Risk Genomic Variants From Genome-Wide Association Studies. J Am Heart Assoc. 2020 Apr 7;9(7):e014146. doi: 10.1161/JAHA.119.014146.
10. J.K. Nicholson, I.D. Wilson Understanding 'global' systems biology: metabonomics and the continuum of metabolism. Nat. Rev. Drug Discov., 2 (8) (2003), pp. 668-676. doi: 10.1038/nrd1157
11. Rhee EP, Gerszten RE. Metabolomics and cardiovascular biomarker discovery. Clin Chem. 2012 Jan;58(1):139-47. doi: 10.1373/clinchem.2011.169573.
12. G.D. Lewis, A. Asnani, R.E. Gerszten Application of metabolomics to cardiovascular biomarker and pathway discovery. J. Am. Coll. Cardiol., 52 (2) (2008), pp. 117-123. doi: 10.1016/j.jacc.2008.03.043
13. J.K. Nicholson, J.C. Lindon Systems biology: metabonomics. Nature, 455 (7216) (2008), pp. 1054-1056. doi: 10.1038/4551054a
14. M. Oresic Metabolomics, a novel tool for studies of nutrition, metabolism and lipid dysfunction. Nutr. Metab. Cardiovasc. Dis., 19 (11) (2009), pp. 816-824. doi: 10.1016/j.numecd.2009.04.018
15. N.G. Mahieu, G.J. Patti Systems-level annotation of a Metabolomics data set reduces 25000 features to fewer than 1000 unique metabolites. Anal. Chem., 89 (19) (2017), pp. 10397-10406. doi: 10.1021/acs.analchem.7b02380
16. Z. Wang, E. Klipfell, B.J. Bennett, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 472 (7341) (2011), p. 57. doi: 10.1038/nature09922
17. J.R. Ussher, S. Elmariah, R.E. Gerszten, J.R. Dyck The emerging role of metabolomics in the diagnosis and prognosis of cardiovascular disease. J. Am. Coll. Cardiol., 68 (25) (2016), pp. 2850-2870. doi: 10.1016/j.jacc.2016.09.972
18. Ruiz-Canela M, Hruby A, Clish CB, et al. Comprehensive Metabolomic Profiling and Incident Cardiovascular Disease: A Systematic Review. J Am Heart Assoc. 2017 Sep 28;6(10):e005705. doi: 10.1161/JAHA.117.005705.
19. McGarrah RW, Crown SB, Zhang GF, et al. Cardiovascular Metabolomics. Circ Res. 2018 Apr 27;122(9):1238-1258. doi: 10.1161/CIRCRESAHA.117.311002. PMID
20. Lu J, Chen B, Chen T, et al. Comprehensive metabolomics identified lipid peroxidation as a prominent feature in human plasma of patients with coronary heart diseases, Redox Biology 12 (2017) 899–907. https://doi.org/10.1016/j.redox.2017.04.032
21. Xu X, Gao B, Guan Q, et al. Metabolomic profile for the early detection of coronary artery disease by using UPLC-QTOF/MS. J Pharm Biomed Anal. 2016 Sep 10;129:34-42. doi: 10.1016/j.jpba.2016.06.040.
22. Han, X. Lipidomics for studying metabolism. Nat. Rev. Endocrinol. Published online July 29, 2016. doi:10.1038/nrendo.2016.98
23. Cajka, T. and Fiehn, O. Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry.TrendsAnalyt. Chem. 2014, 61, 192–206. doi: 10.1016/j.trac.2014.04.017
24. Mundra PA, Barlow CK, Nestel PJ, et al. Large-scale plasma lipidomic profiling identifies lipids that predict cardiovascular events in secondary prevention. JCI Insight. 2018;3(17):e121326. Published 2018 Sep 6. doi:10.1172/jci.insight.121326
25. Huynh K, Barlow CK, Jayawardana KS, et al. High-Throughput Plasma Lipidomics: Detailed Mapping of the Associations with Cardiometabolic Risk Factors. Cell Chem Biol. 2019 Jan 17;26(1):71-84.e4. doi: 10.1016/j.chembiol.2018.10.008.
26. de Carvalho LP, Tan SH, Ow GS, et al. Plasma Ceramides as Prognostic Biomarkers and Their Arterial and Myocardial Tissue Correlates in Acute Myocardial Infarction. JACC Basic Transl Sci. 2018 May 30;3(2):163-175. doi: 10.1016/j.jacbts.2017.12.005.
27. M Hilvo, Peter J Meikle, Eva R Pedersen, et al. Development and validation of a ceramide- and phospholipid-based cardiovascular risk estimation score for coronary artery disease patients, European Heart Journal, Volume 41, Issue 3, 14 January 2020, Pages 371–380, https://doi.org/10.1093/eurheartj/ehz387
28. Peterson LR, Xanthakis V, Duncan MS, et al. Ceramide Remodeling and Risk of Cardiovascular Events and Mortality. J Am Heart Assoc. 2018 May 3;7(10):e007931. doi: 10.1161/JAHA.117.007931.
29. Stegemann C, Pechlaner R, Willeit P, et al Lipidomics profiling and risk of cardiovascular disease in the prospective population-based Bruneck study. Circulation. 2014 May 6;129(18):1821-31. doi: 10.1161/CIRCULATIONAHA.113.002500.
30. Pechlaner R, Tsimikas S, Yin X, et al. Very-Low-Density Lipoprotein-Associated Apolipoproteins Predict Cardiovascular Events and Are Lowered by Inhibition of APOC-III. J Am Coll Cardiol. 2017 Feb 21;69(7):789-800. doi: 10.1016/j.jacc.2016.11.065.
31. Gaudet D, Alexander VJ, Baker BF, et al. Antisense Inhibition of Apolipoprotein C-III in Patients with Hypertriglyceridemia. N Engl J Med. 2015 Jul 30;373(5):438-47. doi: 10.1056/NEJMoa1400283.
32. Hyotylainen, T. and Oresic, M. Systems biology strategies to study lipidomes in health and disease. Prog. Lipid Res. 2014, 55, 43–60. doi: 10.1016/j.plipres.2014.06.001
33. Gstaiger M, Aebersold R. Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat Rev Genet. 2009 Sep;10(9):617-27. doi: 10.1038/nrg2633.
34. Witze ES, Old WM, Resing KA, Ahn NG. Mapping protein post-translational modifications with mass spectrometry. Nat Methods. 2007 Oct;4(10):798-806. doi: 10.1038/nmeth1100.
35. Yates JR, Ruse CI, Nakorchevsky A. Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng. 2009;11:49-79. doi: 10.1146/annurev-bioeng-061008-124934.
36. Lindsey ML, Mayr M, Gomes AV, et al. Transformative Impact of Proteomics on Cardiovascular Health and Disease: A Scientific Statement From the American Heart Association. Circulation. 2015 Sep 1;132(9):852-72. doi: 10.1161/CIR.0000000000000226.
37. Ho JE, Lyass A, Courchesne P, et al. Protein Biomarkers of Cardiovascular Disease and Mortality in the Community. J Am Heart Assoc. 2018 Jul 13;7(14):e008108. doi: 10.1161/JAHA.117.008108.
38. Banfi C, Brioschi M, Marenzi G, et al. Proteome of platelets in patients with coronary artery disease. Exp Hematol. 2010 May;38(5):341-50. doi: 10.1016/j.exphem.2010.03.001.
39. Antonio J López-Farré , Jose J Zamorano-Leon, Luis Azcona, et al. Proteomic changes related to "bewildered" circulating platelets in the acute coronary syndrome. Proteomics. 2011 Aug;11(16):3335-48. doi: 10.1002/pmic.201000708. Epub 2011 Jul 14. doi: 10.1002/pmic.201000708
40. Joshi A, Rienks M, Theofilatos K, Mayr M. Systems biology in cardiovascular disease: a multiomics approach. Nat Rev Cardiol. 2021 May;18(5):313-330. doi: 10.1038/s41569-020-00477-1.
41. Pechlaner R, Tsimikas S, Yin X et al.Very-Low-Density Lipoprotein-Associated Apolipoproteins Predict Cardiovascular Events and Are Lowered by Inhibition of APOC-III. J Am Coll Cardiol. 2017 Feb 21;69(7):789-800. doi: 10.1016/j.jacc.2016.11.065.
42. Lee J, Jung S, Kim N, et al. Myocardial metabolic alterations in mice with diet-induced atherosclerosis: linking sulfur amino acid and lipid metabolism. Sci Rep. 2017 Oct 19;7(1):13597. doi: 10.1038/s41598-017-13991-z.
43. Libbrecht MW, Noble WS. Machine learning applications in genetics and genomics. Nat Rev Genet. 2015 Jun;16(6):321-32. doi: 10.1038/nrg3920.
44. Sanz, J. A. et al. Medical diagnosis of cardiovascular diseases using an interval-valued fuzzy rule-based classification system. Appl. Soft Comput. 20, 103–111 (2014). https://doi.org/10.1016/j.asoc.2013.11.009
Supplementary files
Review
For citations:
Usova E.I., Alieva A.S., Yakovlev A.N., Makarova T.A., Alieva M.S., Konradi A.O., Catapano A.L., Shlyakhto E.V. The role of multi-omics technologies and genetic analysis in the diagnosis and prediction of cardiovascular diseases. Russian Journal for Personalized Medicine. 2022;2(2):6-16. (In Russ.) https://doi.org/10.18705/2782-3806-2022-2-2-6-16