Preview

Russian Journal for Personalized Medicine

Advanced search

Аpplication of Big Data in laboratory medicine. Russian Journal for Personalized Medicine

https://doi.org/10.18705/2782-3806-2023-3-4-77-87

Abstract

The term “big data” (Big Data) refers to data sets, covering the excessive difference in differences between databases in the storage, management and analysis of information. The emergence of big data application algorithms has become the consumption of resources that use  resource resources for information processing and computer calculations for the purpose of  big data for statistical processing, analysis, forecasting and decision making. In laboratory  practice, with a large amount of practical digital information, the use of big data is not currently widespread. The purpose of this work is to conduct a retrospective review of the literature  on the use of big data in the field of laboratory medicine in the period 2018–2023. and evaluating the results of practical developments, benefits and achievements associated with big data  analytics in the field of laboratory.

About the Authors

M. A. Ovchinnikova
Almazov National Medical Research Centre
Russian Federation

Ovchinnikova Marina A. - resident of the Department of Laboratory Medicine and Genetics

Akkuratova str., 2, Saint Petersburg, 197341



Yu. I. Zhilenkova
Almazov National Medical Research Centre; North-Western State Medical University named after I. I. Mechnikov
Russian Federation

Zhilenkova Yuliya I. - PhD., Associate Professor, Department of Laboratory Medicine and Genetics

Saint Petersburg



N. Yu. Chernysh
Almazov National Medical Research Centre; Russian Research Institute of Hematology and Transfusiology of the Federal Medical and Biological Agency
Russian Federation

Chernysh Natalia Yu. - PhD., Associate Professor, Department of Laboratory Medicine and Genetics

Saint Petersburg



References

1. Cadamuro, J. Rise of the Machines: The Inevitable Evolution of Medicine and Medical Laboratories Intertwining with Artificial Intelligence — A Narrative Review. Diagnostics 2021, 11, 1399. doi.org/10.3390/diagnostics11081399

2. Damien Gruson, Thibault Helleputte, Patrick Rousseau, et al. Data science, artificial intelligence, and machine learning: Opportunities for laboratory medicine and the value of positive regulation, Clinical Biochemistry, Volume 69, 2019, Pages 1–7, ISSN 0009- 9120. doi.org/10.1016/j.clinbiochem.2019.04.013

3. Lynch C. Big data: how do your data grow? // Nature. 2008. Vol. 455. № 7209. P. 28–29.

4. Шляхто Е.В., Конради А.О., Курапеев Д.И. Информация как важнейший инструмент развития персонализированной медицины. Как научиться ей управлять на благо пациента. Наука о «больших данных». Российский журнал персонализированной медицины. 2022;2(6):6–15. DOI: 10.18705/2782-3806-2022-2-6-6-15.

5. Гусев А.В., Новицкий Р.Э., Ившин А.А. и др. Машинное обучение на лабораторных данных для прогнозирования заболеваний. Фармакоэкономика. Современная фармакоэкономика и фармакоэпидемиология. 2021;14(4):581–592.

6. Власов В.С., Спельников Д.М., Вавилова Т.В. и др. Прогнозирование повышения концентрации фибрин-мономера при беременности с использованием машинного обучения. Лабораторная служба. 2022;11(4):31–38. doi.org/10.17116/labs20221104131

7. Карнаухов Н.С., Ильюхин Р.Г. Возможности технологий «Big Data» в медицине. Врач и информационные технологии. 2019, № 1. C. 59–63.

8. Hassan M, Awan F.M, Naz A, et al. Innovations in Genomics and Big Data Analytics for Personalized Medicine and Health Care: A Review. Int. J. Mol. Sci. 2022, 23, 4645. doi.org/10.3390/ijms23094645

9. Маркина Н.В., Касюк С.Т., Шамаева Т.Н. Анализ данных в медицинских информационных системах с использованием технологии Data Mining. Информатика, вычислительная техника и управление. Серия «Естественные и технические науки». 2019. № 6. С. 111–116.

10. Магеррамов З.Т., Рагимова Н.А., Абдуллаев В.Г. и др. Технология big data: потенциал, проблемы и применение в медицине и здравоохранении. RI. 2020. С. 54–68.

11. Hassan M, Awan FM, Naz A, et al. Innovations in Genomics and Big Data Analytics for Personalized Medicine and Health Care: A Review. Int. J. Mol. Sci. 2022, 23, 4645. doi.org/10.3390/ijms23094645

12. Гусев А.В., Евгина С.А., Годков М.А. Искусственный интеллект в здравоохранении России. Роль лаборатории. Лабораторная служба. 2022;11(2):5–8. doi.org/10.17116/labs2022110215

13. Ma C, Wang X, Wu J, et al. Real-world big-data studies in laboratory medicine: current status, application, and future considerations. Clin Biochem. 2020 Oct; 84:21–30. DOI: 10.1016/j.clinbiochem.2020.06.014.

14. Aikens RC, Balasubramanian S, Chen JH. A Machine Learning Approach to Predicting the Stability of Inpatient Lab Test Results. AMIA Jt Summits Transl Sci proceedings AMIA Jt Summits Transl Sci. 2019:515– 523.

15. Cardozo G, Tirloni SF, Pereira Moro AR, et al. Use of Artificial Intelligence in the Search for New Information Through Routine Laboratory Tests: Systematic Review. JMIR Bioinform Biotech. 2022 Dec 23;3(1):e40473. DOI: 10.2196/40473.

16. Yang HS, Hou Y, Vasovic LV, et al. Routine Laboratory Blood Tests Predict SARS-CoV-2 InfectionUsing Machine Learning. Clinical Chemistry. 2020 Nov;66(11):1396–1404. DOI: 10.1093/clinchem/hvaa200.

17. Глазкова А.И., Лукьянова Е.А., Артемьева О.А. и др. Подсчет лейкоцитарной формулы при помощи машинного обучения с использованием смартфона. Лабораторная служба. 2022;11(2):53–55. doi. org/10.17116/labs20221102153

18. Ronzio L, Cabitza F, Barbaro, et al. Has the Flood Entered the Basement? A Systematic Literature Review about Machine Learning in Laboratory Medicine. Diagnostics 2021, 11, 372. doi.org/10.3390/diagnostics11020372

19. Gandhi TK, Kachalia A, Thomas EJ, et al. Missed and delayed diagnoses in the ambulatory setting: A study of closed malpractice claims. Ann. Intern. Med. 2006; 145:488–496. DOI: 10.7326/0003-4819-145-7-200610030-00006.

20. Jie Z, Zhiying Z, Li L. A meta-analysis of Watson for Oncology in clinical application. Sci Rep. 2021;11(1). doi .org/10.1038/s41598-021-84973-5

21. Wen X, Leng P, Wang J, et al. Clinlabomics: leveraging clinical laboratory data by data mining strategies. BMC Bioinformatics. 2022 Sep 24;23(1):387. DOI: 10.1186/s12859-022-04926-1.

22. Mamoshina P, Kochetov K, Cortese F, et al. Blood biochemistry analysis to detect smoking status and quantify accelerated aging in smokers. Sci Rep. 2019; 9:142. DOI: 10.1038/s41598-018-35704-w.

23. Yang H, Luo Y, Ren X, et al. Risk prediction of diabetes: big data mining with fusion of multifarious physical examination indicators. Inf Fusion. 2021; 75:140–149. DOI: 10.1016/j.inffus.2021.02.015.

24. Domínguez-Olmedo JL, Gragera-Martínez Á, et al. Machine learning applied to clinical laboratory data in Spain for COVID-19 outcome prediction: model development and validation. J Med Internet Res. 2021; 23: e26211. DOI: 10.2196/26211.


Review

For citations:


Ovchinnikova M.A., Zhilenkova Yu.I., Chernysh N.Yu. Аpplication of Big Data in laboratory medicine. Russian Journal for Personalized Medicine. Russian Journal for Personalized Medicine. 2023;3(4):77-87. (In Russ.) https://doi.org/10.18705/2782-3806-2023-3-4-77-87

Views: 334


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3806 (Print)
ISSN 2782-3814 (Online)