Роль микроРНК в диагностике рака почки
https://doi.org/10.18705/2782-3806-2023-3-5-46-59
EDN: BAXAQW
Аннотация
В обзоре проводится анализ литературных данных о роли циркулирующих микроРНК (миРНК) при различных гистологических типах рака почки у человека. Приведены основные сведения о механизмах биогенеза данных молекул, рассмотрена их регуляторная роль. Особое внимание уделяется перспективе использования миРНК в качестве диагностических и прогностических биомаркеров рака почки с учетом противоречивых данных, выявленных в различных исследованиях.
Ключевые слова
Об авторах
А. Б. БондаренкоРоссия
Бондаренко Андрей Борисович, младший научный сотрудник НИЛ инфекционных патогенов и биомолекулярных наноструктур НМИЦ им. В. А. Алмазова; старший преподаватель кафедры медицинской биологии СПбГПМУ,
г. Санкт-Петербург.
А. Р. Князева
Россия
Князева Александра Романовна, лаборант-исследователь НИЛ нейрогенеза и нейродегенеративных заболеваний НМИЦ им. В. А. Алмазова; старший лаборант кафедры медицинской биологии СПбГПМУ,
г. Санкт-Петербург.
Ю. В. Чебуркин
Россия
Чебуркин Юрий Владимирович, к.м.н., заведующий НИЛ инфекционных патогенов и биомолекулярных наноструктур, старший научный сотрудник НИО микроциркуляции и метаболизма миокарда,
г. Санкт-Петербург.
Список литературы
1. Чебуркин Ю.В., Князева Т.Г., Петер Ш. и др. Молекулярный портрет карцином почки человека, полученный на основе экспрессии протеин-тирозин-киназ и тирозин-фосфатаз, контролирующих передачу регуляторных сигналов в клетках. Молекулярная биология. 2002; 36(3): 480–490]. DOI: 10.1023/A:1016059313254.
2. Князев Ю.П., Чебуркин Ю.В., Спикерманн К. и др. Профили экспрессии протеинкиназ и фосфатаз, полученные с помощью упорядоченных наборов кДНК (cDNA Arrays): молекулярный портрет рака предстательной железы. Молекулярная биология. 2003; 37(1): 97–111]. DOI: 10.1023/A:1022341015018.
3. Tran DH, Satou K, Ho TB. Finding microRNA regulatory modules in human genome using rule induction. BMC Bioinformatics. 2008; 12;9 (Suppl 12):S5. DOI: 10.1186/1471-2105-9-S12-S5.
4. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003; 9:669–676. DOI: 10.1038/nm0603-669.
5. Rodriguez A, Griffiths-Jones S, Ashurst JL, et al. Identification of mammalian microRNA host genes and transcription units. Genome Res. 2004; 14: 1902–1910. DOI: 10.1101/gr.2722704.
6. Bartel DP. Metazoan MicroRNAs. Cell. 2018; 173: 20–51. DOI: 10.1016/j.cell.2018.03.006.
7. Gebert LFR, MacRae IJ. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol. 2019; 20: 21–37. DOI: 10.1038/s41580-018-0045-7.
8. Bortoletto AS and Parchem RJ. KRAS Hijacks the miRNA Regulatory Pathway in Cancer. Cancer Research. 2023; 83(10): 1563–1572. DOI: 10.1158/0008-5472.CAN-23-0296.
9. Matsuyama H, Suzuki HI. Systems and Synthetic microRNA Biology: From Biogenesis to Disease Pathogenesis. Int. J. Mol. Sci. 2019; 21(1):132. DOI: 10.3390/ijms21010132.
10. Komatsu S, Kitai H, Suzuki HI. Network regulation of microRNA biogenesis and target interaction. Cells. 2023; 12(2): 306. DOI: 10.3390/cells12020306.
11. Corcoran DL, Pandit KV, Gordon B, et al. Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PloS One. 2009; 4(4): e5279. DOI: 10.1371/journal.pone.0005279.
12. Vorozheykin PS, Titov II. Erratum to: How animal miRNAs structure influences their biogenesis. Russian Journal of Genetics. 2020; 56: 1012–1024. DOI: 10.1134/S1022795420220019.
13. Веряскина Ю.А., Титов С.Е., Ковынев И.Б. и др. МикроРНК при миелодиспластическом синдроме. Acta Naturae. 2021; 13(2): 4–15]. DOI: 10.32607/actanaturae.11209.
14. Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004; 23: 4051–4060. DOI: 10.1038/sj.emboj.7600385.
15. Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat. Struct. Mol. Biol. 2006; 13: 1097–1101. DOI: 10.1038/nsmb1167.
16. Saini HK, Griffiths-Jones S, Enright AJ. Genomic analysis of human microRNA transcripts. Proceedings of the National Academy of Sciences. 2007; 104(45): 17719–17724. DOI: 10.1073/pnas.0703890104.
17. Suzuki HI, Young RA, Sharp PA. Super-enhancermediated RNA processing revealed by integrative microRNA network analysis. Cell. 2017; 168(6): 1000–1014. DOI: 10.1016/j.cell.2017.02.015.
18. O’Brien J, Hayder H, Zayed Y, et al. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. 2018; 9(402): 1–12. DOI: 10.3389/fendo.2018.00402.
19. Starega-Roslan J, Galka-Marciniak P, Krzyzosiak WJ. Nucleotide sequence of miRNA precursor contributes to cleavage site selection by Dicer. Nucleic acids research. 2015; 43(22): 10939–10951. DOI: 10.1093/nar/gkv968.
20. Butkyte S, Ciupas L, Jakubauskiene E, et al. Splicing-dependent expression of microRNAs of mirtron origin in human digestive and excretory system cancer cells. Clinical epigenetics. 2016; 8(1): 1–11. DOI: 10.1186/s13148-016-0200-y.
21. Yi R, Qin Y, Macara IG, et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes & development. 2003; 17(24): 3011–3016. DOI: 10.1101/gad.1158803.
22. Lund E, Guttinger S, Calado A, et al. Nuclear export of microRNA precursors. Science; 2004; 303(5654): 95–98. DOI: 10.1126/science.1090599.
23. Wang X, Xu X, Ma Z, et al. Dynamic mechanisms for pre-miRNA binding and export by Exportin-5. RNA. 2011; 17(8): 1511–1528. DOI: 10.1261/rna.2732611.
24. Melo SA, Moutinho C, Ropero S, et al. A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer cell. 2010; 18(4): 303–315. DOI: 10.1016/j.ccr.2010.09.007.
25. Chendrimada TP, Gregory RI, Kumaraswamy E, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 2005; 436: 740–4. DOI: 10.1038/nature03868.
26. Kok KH, Ng MH, Ching YP, et al. Human TRBP and PACT directly interact with each other and associate with dicer to facilitate the production of small interfering RNA. J Biol Chem. 2007; 282: 17649–57. DOI: 10.1074/jbc.M611768200.
27. Kwak PB, Iwasaki S, Tomari Y. The microRNA pathway and cancer. Cancer science. 2010; 101(11): 2309–2315. DOI: 10.1111/j.1349-7006.2010.01683.x.
28. MacFarlane LA, Murphy PR. MicroRNA: biogenesis, function and role in cancer. Current genomics. 2010; 11(7): 537–561. DOI: 10.2174/138920210793175895.
29. Mückstein U, Tafer H, Hackermüller J, et al. Thermodynamics of RNA–RNA binding. Bioinformatics. 2006; 22(10): 1177–1182. DOI: 10.1093/bioinformatics/btl024.
30. Deng Y, Wang CC, Choy KW, et al. Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies. Gene. 2014; 538(2): 217–227. DOI: 10.1016/j.gene.2013.12.019.
31. Gu S, Kay MA. How do miRNAs mediate translational repression? Silence. 2010; 1(11): 1–5. DOI: 10.1186/1758-907X-1-11.
32. Wilczynska A, Bushell M. The complexity of miRNA-mediated repression. Cell Death & Differentiation. 2015; 22(1): 22–33. DOI: 10.1038/cdd.2014.112.
33. Suzuki HI, Yamagata K, Sugimoto K, et al. Modulation of microRNA processing by p53. Nature. 2009; 460(7254): 529–533. DOI: 10.1038/nature08199.
34. Liang B, Zhao J, Wang X. A three-microRNA signature as a diagnostic and prognostic marker in clear cell renal cancer: An In Silico analysis. PloS One. 2017; 12(6): e0180660. DOI: 10.1371/journal.pone.0180660.
35. Mytsyk Y, Dosenko V, Borys Y, et al. MicroRNA15a expression measured in urine samples as a potential biomarker of renal cell carcinoma. Int Urol Nephrol. 2018; 50(5): 851–859. DOI: 10.1007/s11255-018-1841-x.
36. Nofech-Mozes R, Khella HWZ, Scorilas A, et al. MicroRNA-194 is a Marker for Good Prognosis in Clear Cell Renal Cell Carcinoma. Cancer Med. 2016; 5(4): 656–664. DOI: 10.1002/cam4.631.
37. Quan J, Pan X, Li Y, et al. MiR-23a-3p acts as an oncogene and potential prognostic biomarker by targeting PNRC2 in RCC. BioMed Pharmacother. 2019; 110: 656–666. DOI: 10.1016/j.biopha.2018.11.065.
38. Cao J, Liu J, Xu R, et al. MicroRNA-21 stimulates epithelial-to-mesenchymal transition and tumorigenesis in clear cell renal cells. Mol Med Rep. 2016; 13(1): 75–82. DOI: 10.3892/mmr.2015.4568.
39. Ching T, Zhu X, Garmire LX. Cox-nnet: an artificial neural network method for prognosis prediction of high-throughput omics data. PloS Comput Biol. 2018; 14(4): e1006076. DOI: 10.1371/journal.pcbi.1006076.
40. Ge YZ, Xu LW, Zhou CC, et al. A BAP1 Mutationspecific MicroRNA Signature Predicts Clinical Outcomes in Clear Cell Renal Cell Carcinoma Patients with Wildtype BAP1. Int J Cancer. 2017; 8(13): 2643–52. DOI: 10.7150/ jca.20234.
41. Heneghan HM, Miller N, Lowery AJ, et al. Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann Surg. 2010; 251(3): 499–505. DOI: 10.1097/SLA.0b013e3181cc939f.
42. Hamam R, Hamam D, Alsaleh KA, et al. Circulating microRNAs in breast cancer: novel diagnostic and prognostic biomarkers. Cell Death Dis. 2017; 8(9): e3045. DOI: 10.1038/cddis.2017.440.
43. Cheng H, Zhang L, Cogdell DE, et al. Circulating plasma MiR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS One. 2011; 6(3), e17745. DOI: 10.1371/journal.pone.0017745.
44. Imaoka H, Toiyama Y, Fujikawa H, et al. Circulating microRNA-1290 as a novel diagnostic and prognostic biomarker in human colorectal cancer. Ann Oncol. 2016; 27(10): 1879–86. DOI: 10.1093/annonc/mdw279.
45. Ahmed EK, Fahmy SA, Effat H, et al. Circulating MiR-210 and MiR-1246 as Potential Biomarkers for Differentiating Hepatocellular Carcinoma from Metastatic Tumors in the Liver. J Med Biochem. 2019; 38(2): 109–17. DOI: 10.2478/jomb-2018-0010.
46. Renesto P, Balloy V, Vargaftig BB, et al. Interference of anti-inflammatory and anti-asthmatic drugs with neutrophil-mediated platelet activation: singularity of azelastine. Br J Pharmacol. 1991; 103(2): 1435–40. DOI: 10.1111/j.1476-5381.1991.tb09807.x.
47. Li L, Wang X, Li W, et al. miR-21 modulates prostaglandin signaling and promotes gastric tumorigenesis by targeting 15-PGDH. Biochem Biophys Res Commun. 2018; 495(1): 928–34. DOI: 10.1016/j.bbrc.2017.09.137.
48. Самсонов Р.Б., Чебуркин Ю.В., Смирнова А.В. и др. Анализ циркулирующих экзосом — новый метод ранней и дифференциальной диагностики рака поджелудочной железы. Российский биотерапевтический журнал. 2017; 16(s1):69–70].
49. Agaoglu FY, Kovancilar M, Dizdar Y, et al. Investigation of miR-21, miR-141, and miR-221 in blood circulation of patients with prostate cancer. Tumor Biol. 2011; 32(3): 583–588. DOI: 10.1007/s13277-011-0154-9.
50. Mohammadi Torbati P, Asadi F, Fard-Esfahani P. Circulating miR-20a and miR-26a as Biomarkers in Prostate Cancer. Asian Pac J Cancer Prev. 2019; 20(5): 1453–6. DOI: 10.31557/APJCP.2019.20.5.1453.
51. Nakamura K, Sawada K, Yoshimura A, et al. Clinical relevance of circulating cell-free microRNAs in ovarian cancer. Mol Cancer. 2016; 15(1): 48. DOI: 10.1186/s12943-016-0536-0.
52. Петрова Т.А., Кондратов К.А., Федоров А.В. и др. Изменение уровней циркулирующих микроРНК при патогенезе генетически обусловленного сахарного диабета взрослых у молодых. Трансляционная медицина. 2016; 3(6): 15–20. DOI: 10.18705/2311-4495-2016-3-6-15-20.
53. Худяков А.А., Смолина Н.А., Перепелина К.И. и др. Внеклеточные микроРНК и митохондриальная ДНК как потенциальные биомаркеры аритмогенной кардиомиопатии. Биохимия. 2019; 84(3), 392–403. DOI: 10.1134/S0320972519030096.
54. Polyakova EA, Zaraiskii MI, Mikhaylov EN, et al. Association of myocardial and serum miRNA expression patterns with the presence and extent of coronary artery disease: A cross-sectional study. Int J Cardiol. 2021; 322: 9–15. doi: 10.1016/j.ijcard.2020.08.043.
55. Zhu W, Liu M, Fan Y, et al. Dynamics of circulating microRNAs as a novel indicator of clinical response to neoadjuvant chemotherapy in breast cancer. Cancer Med. 2018; 7(9): 4420–33. DOI: 10.1002/cam4.1723.
56. Papadaki C, Stratigos M, Markakis G, et al. Circulating microRNAs in the early prediction of disease recurrence in primary breast cancer. Breast Cancer Res. 2018; 20(1): 72. DOI: 10.1186/s13058-018-1001-3.
57. Heitzer E, Haque IS, Roberts CES, et al. Current and future perspectives of liquid biopsies in genomicsdriven oncology. Nat Rev Genet. 2019; 20(2): 71–88. DOI: 10.1038/s41576-018-0071-5.
58. Ye Q, Ling S, Zheng S, et al. Liquid biopsy in hepatocellular carcinoma: circulating tumor cells and circulating tumor DNA. Mol Cancer. 2019; 18(1): 114. DOI: 10.1186/s12943-019-1043-x.
59. Самсонов Р.Б., Бурдаков В.С., Штам Т.А. и др. Метод дифференциальной диагностики узловых заболеваний щитовидной железы: анализ комбинации микроРНК (миРНК-21, -181a и -146а). Опухоли головы и шеи. 2017; 7(2): 16–24. DOI: 10.17650/2222-1468-2017-7-2-16-24.
60. Iwamoto H, Kanda Y, Sejima T, et al. Serum miR210 as a potential biomarker of early clear cell renal cell carcinoma. Int J Oncol. 2014; 44(1): 53–58. DOI: 10.3892/ijo.2013.2169.
61. Bo HQ, Ma X, Zhang X, et al. Down-Regulated miR-30a in Clear Cell Renal Cell Carcinoma Correlated with Tumor Hematogenous Metastasis by Targeting Angiogenesis-Specific DLL4. PloS One. 2013; 8(6): e67294. DOI: 10.1371/journal.pone.0067294.
62. Szabo Z, Szegedi K, Gombos K, et al. Expression of miRNA-21 and miRNA-221 in clear cell renal cell carcinoma (ccRCC) and their possible role in the development of ccRCC. Urol Oncol. 2016; 34(12): 533. e21–533.e27. DOI: 10.1016/j.urolonc.2016.06.011.
63. Wu X, Weng L, Li X, et al. Identification of a 4-microRNA signature for clear cell renal cell carcinoma metastasis and prognosis. PLoS One. 2012; 7(5): e35661. DOI: 10.1371/journal.pone.0035661.
64. Wang X, Wang T, Chen C, et al. Serum exosomal miR-210 as a potential biomarker for clear cell renal cell carcinoma. J Cell Biochem. 2019; 120(2): 1492–1502. DOI: 10.1002/jcb.27347.
65. Petrozza V, Pastore AL, Palleschi G, et al. Secreted miR-210-3p as non-invasive biomarker in clear cell renal cell carcinoma. Oncotarget. 2017; 8(41): 69551–69558. DOI: 10.18632/oncotarget.18449.
66. Petrozza V, Costantini M, Tito C, et al. Emerging role of secreted miR-210-3p as potential biomarker for clear cell renal cell carcinoma metastasis. Cancer Biomark. 2020; 27(2): 181–188. DOI: 10.3233/CBM190242.
67. Li G, Zhao A, Peoch M, et al. Detection of urinary cell-free miR-210 as a potential tool of liquid biopsy for clear cell renal cell carcinoma. Urol Oncol. 2017; 35(5): 294–299. DOI: 10.1016/j.urolonc.2016.12.007.
68. Di Meo A, Brown MD, Finelli A, et al. Prognostic urinary miRNAs for the assessment of small renal masses. Clin Biochem. 2020; 75: 15–22. DOI: 10.1016/j.clinbiochem.2019.10.002.
69. Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008; 18(10): 997–1006. DOI: 10.1038/cr.2008.282.
70. Shi L, Wang M, Li H, et al. MicroRNAs in Body Fluids: A More Promising Biomarker for Clear Cell Renal Cell Carcinoma. Cancer Manag Res. 2021; 13: 7663–7675. DOI: 10.2147/CMAR.S330881.
71. Wang K, Yuan Y, Cho JH, et al. Comparing the MicroRNA spectrum between serum and plasma. PLoS One. 2012; 7(7): e41561. DOI: 10.1371/journal.pone.0041561.
72. Chanudet E, Wozniak MB, Bouaoun L, et al. Large-scale genome-wide screening of circulating microRNAs in clear cell renal cell carcinoma reveals specific signatures in late-stage disease. Int J Cancer. 2017; 141(9): 1730–1740. DOI: 10.1002/ijc.30845.
73. Lou N, Ruan AM, Qiu B, et al. miR-144-3p as a novel plasma diagnostic biomarker for clear cell renal cell carcinoma. Urol Oncol. 2017; 35(1): 36.e7–36.e14. DOI: 10.1016/j.urolonc.2016.07.012.
74. Huang G, Li H, Wang J, et al. Combination of tumor suppressor miR-20b-5p, miR-30a-5p, and miR196a-5p as a serum diagnostic panel for renal cell carcinoma. Pathol Res Pract. 2020; 216(11): 153152. DOI: 10.1016/j.prp.2020.153152.
75. Штам Т.А., Самсонов Р.Б., Волницкий А.В. и др. Сравнительный анализ методов выделения внеклеточных микровезикул из культуральной среды. Биомедицинская химия. 2018; 64(1): 23–30. DOI: 10.18097/PBMC20186401023.
76. Малек А.В., Берштейн Л.М., Филатов М.В. и др. Система экзосомальных межклеточных коммуникаций и ее роль в процессе метастатической диссеминации. Вопросы онкологии. 2014; 60(4): 429–436]. PMID: 25552061.
77. Rana S, Malinowska K, Zöller M. Exosomal tumor microRNA modulates premetastatic organ cells. Neoplasia. 2013; 15(3): 281–295. DOI: 10.1593/neo.122010.
78. Yang C, Robbins PD. The roles of tumor-derived exosomes in cancer pathogenesis. Clin Dev Immunol. 2011; 2011: 842–849. DOI: 10.1155/2011/842849.
79. Butz H, Nofech-Mozes R, Ding Q, et al. Exosomal MicroRNAs are diagnostic biomarkers and can mediate cell-cell communication in renal cell carcinoma. Eur Urol Focus. 2016; 2(2): 210–218. DOI: 10.1016/j.euf.2015.11.006.
80. Crentsil VC, Liu H, Sellitti DF. Comparison of exosomal microRNAs secreted by 786-O clear cell renal carcinoma cells and HK-2 proximal tubule-derived cells in culture identifies microRNA-205 as a potential biomarker of clear cell renal carcinoma. Oncol Lett. 2018; 16(1): 1285–1290. DOI: 10.3892/ol.2018.8751.
81. Самсонов Р.Б., Чебуркин Ю.В., Штам Т.А., Малек А.В. Анализ биохимического состава циркулирующих экзосом — метод первичной и дифференциальной диагностики онкологических заболеваний. Биотехнология: состояние и перспективы развития — материалы IX Международного Конгресса. 20–22 февраля 2017; Том 1. Издательство: ООО «Русские Экспо Дни Групп» (Москва)]. ISBN: 978-5-9909118-0-2.
82. Zhao L, Liu K, Pan X, et al. miR-625-3p promotes migration and invasion and reduces apoptosis of clear cell renal cell carcinoma. Am J Transl Res. 2019; 11(10): 6475–6486. PMID: 31737199.
83. Pigati L, Yaddanapudi SCS, Iyengar R, et al. Selective release of microRNA species from normal and malignant mammary epithelial cells. PLoS One. 2010; 5(10): e13515. DOI: 10.1371/journal.pone.0013515.
84. Tang K, Xu H. Prognostic value of metasignature miRNAs in renal cell carcinoma: an integrated miRNA expression profiling analysis. Sci Rep. 2015; 5: 10272. DOI: 10.1038/srep10272.
85. Song F, Yang D, Liu B, et al. Integrated microRNA network analyses identify a poor-prognosis subtype of gastric cancer characterized by the miR-200 family. Clin. Cancer Res. 2014; 20(4): 878–889. DOI: 10.1158/1078-0432.CCR-13-1844.
86. Dhayat SA, Mardin WA, Köhler G, et al. The microRNA-200 family-A potential diagnostic marker in hepatocellular carcinoma? J. Surg. Oncol. 2014; 110(4): 430–438. DOI: 10.1002/jso.23668.
87. Cheng G, Li M, Ma X, et al. Systematic analysis of microRNA biomarkers for diagnosis, prognosis, and therapy in patients with clear cell renal cell carcinoma. Front Oncol. 2020; 10: 543817. DOI: 10.3389/fonc.2020.543817.
88. Fan Y, Ma X, Li H, et al. miR-122 promotes metastasis of clear-cell renal cell carcinoma by downregulating Dicer. Int J Cancer. 2017; 142(3): 547–560. DOI: 10.1002/ijc.31050.
89. Tusong H, Maolakuerban N, Guan J, et al. Functional analysis of serum microRNAs miR-21 and miR-106a in renal cell carcinoma. Cancer Biomark. 2017; 18(1): 79–85. DOI: 10.3233/CBM-160676.
90. Heinemann FG, Tolkach Y, Deng M, et al. Serum miR-122-5p and miR-206 expression: non-invasive prognostic biomarkers for renal cell carcinoma. Clin Epigenetics. 2018; 10:11. DOI: 10.1186/s13148-018-0444-9.
91. Liu S, Deng X, Zhang J. Identification of dysregulated serum miR-508-3p and miR-885-5p as potential diagnostic biomarkers of clear cell renal carcinoma. Mol Med Rep. 2019; 20(6): 5075–5083. DOI: 10.3892/mmr.2019.10762.
92. Wang XG, Zhu YW, Wang T, et al. MiR-483-5p downregulation contributed to cell proliferation, metastasis, and inflammation of clear cell renal cell carcinoma. Kaohsiung J Med Sci. 2021; 37(3): 192–199. DOI: 10.1002/kjm2.12320.
93. Zhao L, Liu K, Pan X, et al. miR-625-3p promotes migration and invasion and reduces apoptosis of clear cell renal cell carcinoma. Am J Transl Res. 2019; 11(10):6475–6486. PMID: 31737199.
94. Xiao W, Wang C, Chen K, et al. MiR-765 functions as a tumour suppressor and eliminates lipids in clear cell renal cell carcinoma by downregulating PLP2. EBioMedicine. 2020; 51: 102622. DOI: 10.1016/j.ebiom.2019.102622.
95. Song S, Long M, Yu G, et al. Urinary exosome miR-30c-5p as a biomarker of clear cell renal cell carcinoma that inhibits progression by targeting HSPA5. J Cell Mol Med. 2019; 23(10): 6755–6765. DOI: 10.1111/jcmm.14553.
96. Wang L, Yang G, Zhao D, et al. CD103-positive CSC exosome promotes EMT of clear cell renal cell carcinoma: role of remote MiR-19b-3p. Mol Cancer. 2019; 18(1): 86. DOI: 10.1186/s12943-019-0997-z.
97. Xiao CT, Lai WJ, Zhu WA, et al. MicroRNA derived from circulating exosomes as noninvasive biomarkers for diagnosing renal cell carcinoma. Onco Targets Ther. 2020; 13: 10765–10774. DOI: 10.2147/OTT.S271606.
98. Chen B, Duan L, Yin G, et al. Simultaneously expressed miR-424 and miR-381 synergistically suppress the proliferation and survival of renal cancer cells — Cdc2 activity is up-regulated by targeting WEE1. Clinics (Sao Paulo). 2013; 68(6): 825–833. DOI: 10.6061/clinics/2013(06)17.
99. He Y, Liu J, Wang Y, et al. Role of miR-486-5p in regulating renal cell carcinoma cell proliferation and apoptosis via TGF-beta-activated kinase 1. J Cell Biochem. 2019; 120(3): 2954–2963. DOI: 10.1002/jcb.26900.
100. Ralla B, Busch J, Florcken A, et al. miR-9-5p in nephrectomy specimens is a potential predictor of primary resistance to first-line treatment with tyrosine kinase inhibitors in patients with metastatic renal cell carcinoma. Cancers (Basel). 2018; 10(9): 321. DOI: 10.3390/cancers10090321.
101. Silva-Santos RM, Costa-Pinheiro P, Luis A, et al. MicroRNA profile: a promising ancillary tool for accurate renal cell tumour diagnosis. Br J Cancer. 2013; 109(10): 2646–2653. DOI: 10.1038/bjc.2013.552.
102. Hell MP, Thoma CR, Fankhauser N, et al. miR-28-5p promotes chromosomal instability in VHL-associated cancers by inhibiting Mad2 translation. Cancer Res. 2014; 74(9): 2432–2443. DOI: 10.1158/0008-5472.CAN13-2041.
103. Nie W, Ni D, Ma X, et al. miR 122 promotes proliferation and invasion of clear cell renal cell carcinoma by suppressing Forkhead box O3. Int J Oncol. 2019; 54(2): 559–571. DOI: 10.3892/ijo.2018.4636.
104. Chen X, Lou N, Ruan A, et al. miR-224/miR141 ratio as a novel diagnostic biomarker in renal cell carcinoma. Oncol Lett. 2018; 16(2): 1666–1674. DOI: 10.3892/ol.2018.8874.
105. Liep J, Kilic E, Meyer HA, et al. Cooperative effect of miR-141-3p and miR-145-5p in the regulation of targets in clear cell renal cell carcinoma. PLoS One. 2016; 11(6): e0157801. DOI: 10.1371/journal.pone.0157801.
106. Liu W, Chen H, Wong N, et al. Pseudohypoxia induced by miR-126 deactivation promotes migration and therapeutic resistance in renal cell carcinoma. Cancer Lett. 2017; 394: 65–75. DOI: 10.1016/j.canlet.2017.02.025.
107. Lin C, Li Z, Chen P, et al. Oncogene miR-154-5p regulates cellular function and acts as a molecular marker with poor prognosis in renal cell carcinoma. Life Sci. 2018; 209: 481–489. DOI: 10.1016/j.lfs.2018.08.044.
108. Zhang J, Ye Y, Chang DW, et al. Global and targeted miRNA expression profiling in clear cell renal cell carcinoma tissues potentially links miR-155-5p and miR-210-3p to both tumorigenesis and recurrence. Am J Pathol. 2018; 188(11): 2487–2496. DOI: 10.1016/j.ajpath.2018.07.026.
109. Ma X, Shen D, Li H, et al. MicroRNA-185 inhibits cell proliferation and induces cell apoptosis by targeting VEGFA directly in von Hippel-Lindau-inactivated clear cell renal cell carcinoma. Urol Oncol. 2015; 33(4): 169 e161–111. DOI: 10.1016/j.urolonc.2015.01.003.
110. Lu GJ, Dong YQ, Zhang QM, et al. miRNA-221 promotes proliferation, migration and invasion by targeting TIMP2 in renal cell carcinoma. Int J Clin Exp Pathol. 2015; 8(5): 5224–5229. PMID: 26191221.
111. Федоров А.В., Минасян С.М., Костарева А.А. и др. Повышение уровня микроРНК-208а в цельной крови после ишемии-реперфузии миокарда у крыс. Регионарное кровообращение и микроциркуляция. 2012; 11(2): 66–71]. DOI: 10.24884/1682-6655-2012-11-2-66-71.
Рецензия
Для цитирования:
Бондаренко А.Б., Князева А.Р., Чебуркин Ю.В. Роль микроРНК в диагностике рака почки. Российский журнал персонализированной медицины. 2023;3(5):46-59. https://doi.org/10.18705/2782-3806-2023-3-5-46-59. EDN: BAXAQW
For citation:
Bondarenko A.B., Knyazeva A.R., Cheburkin Yu.V. Role of microRNAs in renal cancer diagnostics. Russian Journal for Personalized Medicine. 2023;3(5):46-59. (In Russ.) https://doi.org/10.18705/2782-3806-2023-3-5-46-59. EDN: BAXAQW