Preview

Russian Journal for Personalized Medicine

Advanced search

Brown or beige adipose tissue – a target for metabolic health therapy?

https://doi.org/10.18705/2782-3806-2025-5-1-6-28

EDN: TZSKZE

Abstract

The search for new ways to solve the problem of obesity is highly relevant, since the effectiveness of obesity treatment worldwide is low. A possible promising target for researchers is brown adipose tissue. Brown adipose tissue is involved in the expenditure of excess energy and the maintenance of metabolic health, unlike white adipose tissue. In the human body, there are 2 subtypes of brown adipose tissue – classic brown and beige. This review attempts to determine whether there are differences in the effects of drugs on these subtypes of brown adipose tissue and in the consequences of activating these subtypes.

 

About the Authors

T. P. Tuchina
Almazov National Medical Research Centre
Russian Federation

Tuchina Taisiia P., endocrinologist 

Akkuratova str., 2, Saint Petersburg, 197341



Yu. A. Kononova
Almazov National Medical Research Centre
Russian Federation

Kononova Yulia A., laboratory assistant of the Department of Endocrinology 

Akkuratova str., 2, Saint Petersburg, 197341



G. G. Zasypkin
Almazov National Medical Research Centre
Russian Federation

Zasypkin German G., Junior Researcher, Research Laboratory of Prediabetes and Metabolic Disorders, Research Institute of Genetic Risks and Personalized
Prevention of World-Class Research Centre for Personalized Medicine

Akkuratova str., 2, Saint Petersburg, 197341



A. Yu. Babenko
Almazov National Medical Research Centre
Russian Federation

Babenko Alina Yu., Doctor of Medical Sciences, Head of the Research Institute of Genetic Risks and Personalized Prevention of World-Class Research Centre for Personalized Medicine

Akkuratova str., 2, Saint Petersburg, 197341



References

1. Harb E, Kheder O, Poopalasingam G, et al. Brown adipose tissue and regulation of human body weight. Diabetes Metab Res Rev. 2023; 39(1):e3594. DOI: 0.1002/dmrr.3594.

2. Pilkington AC, Paz HA, Wankhade UD, et al. Beige Adipose Tissue Identification. Frontiers in Endocrinology. 2021; 12:599134. DOI: 10.3389/fendo.2021.599134.

3. Ghesmati Z, Rashid M, Fayezi S, et al. An update on the secretory functions of brown, white, and beige adipose tissue: Towards therapeutic applications. Rev Endocr Metab Disord. 2024; 25:279–308. DOI: 10.1007/s11154-023-09850-0.

4. Ziqubu K, Dludla P, Mabhida S, et al. Brown adipose tissue-derived metabolites and their role in regulating metabolism. Metabolism. 2024; 150:155709. doi.org/10.1016/j.metabol.2023.155709.

5. FernandesdaSilva A, Rangel-Azevedo C, Santana-Olivera DA. Endoplasmic reticulum stress as the basis of obesity and metabolic diseases: focus on adipose tissue, liver, and pancreas. J Nutritional Biochemistry. 2022;105:109002. DOI: 10.1007/s00394-021-02542-y.

6. Scheele C, Wolfrum C. Brown Adipose Crosstalk in Tissue Plasticity and Human Metabolism. Endocrine Reviews. 2020; 41:53–65. DOI: 10.1210/endrev/bnz007.

7. McNeill BT, Suchacki KJ, Stimson RH. Mechanism in endocrinology: Human brown adipose tissue as a therapeutic target: Warming up or cooling down? Eur J Endocrinol. 2021;184:R243–R259. DOI: 10.1530/EJE-20-1439.

8. Markina NO, Matveev GA, Zasypkin GG, et al. Role of Brown Adipose Tissue in MetabolicHealth and Efficacy of Drug Treatment for Obesity. J Clin Med. 2024;13:4151. In Russian [Маркина Н.О., Матвеев Г.А., Засыпкин Г.Г. и др. Роль бурой жировой ткани в метаболическом здоровье и эффективности медикаментозного лечения ожирения. Клиническая медицина. 2024; 13:4151]. DOI: 10.3390/jcm13144151.

9. Ikeda K, Kang Q, Yoneshiro T, et al. UCP1- independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat Med. 2017;23(12):1454–1465. DOI:10.1038/nm.4429.

10. Kazak L, Chouchani ET, Jedrychowski MP, et al. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell. 2015;163(3):643–655. DOI:10.1016/j.cell.2015.09.035.

11. Chondronikola M, Beeman SC, Wahl RL. Noninvasive methods for the assessment of brown adipose tissue in humans. J Physiol. 2018; 596(3):363–378. DOI: 10.1113/JP274255.

12. Chen KY, Cypess AM, Laughlin MR, et al. Brown Adipose Reporting Criteria in Imaging STudies (BARCIST 1.0): Recommendations for Standardized FDG-PET/CT Experiments in Humans. Cell Metab. 2016;24(2):210–222. DOI:10.1016/j.cmet.2016.07.014.

13. Chen YC, Cypess AM, Palmer M, et al. Measurement of human brown adipose tissue volume and activity using anatomic MR imaging and functional MR imaging. J Nucl Med. 2013;54:1584–1587. DOI: 10.2967/jnumed.112.117275Med.2013;54:1584–1587.

14. Hu HH, Chung SA, Nayak KS, et al. Differential computed tomographic attenuation of metabolically active and inactive adipose tissues: preliminary findings. J Comput Assist Tomogr. 2011;35:65–71. DOI: 10.1097/RCT.0b013e3181fc2150.

15. Pan R, Liu J, Chen Y. Treatment of obesityrelated diabetes: significance of thermogenic adipose tissue and targetable receptors. Front Pharmacol. 2023;14;1144918. DOI: 10.3389/fphar.2023.1144918.

16. Liu Z, Liao W, Yin X, et al. Resveratrol-induced brown fat-like phenotype in 3T3-L1 adipocytes partly via mTOR pathway. Food Nutr Res. 2020;14:64. doi: 10.29219/fnr.v64.3656.

17. Finlin BS, Memetimin H, Confides AL, et al. Human adipose beiging in response to cold and mirabegron. JCI Insight. 2018;3(15):e121510. DOI: 10.1172/jci.insight.121510.

18. Lee P, Smith S, Linderman J, et al. Temperatureacclimated brown adipose tissue modulates insulin sensitivity in humans. Diabetes. 2014;63(11):3686–3698. DOI: 10.2337/db14-0513.

19. Yoneshiro T, Aita S, Matsushita M, et al. Brown adipose tissue as an antiobesity agent in humans. J Clin Investigation. 2013;123(8):3404–3408. DOI: 10.1172/JCI67803.

20. Chimen M, Kennedy A, Nirantharakumar K, et al. What are the health benefits of physical activity in type 1 diabetes mellitus? A literature review. Diabetologia. 2012;55:542–551. DOI: 10.1007/s00125-011-2403-2.

21. Handschin C, Spiegelman BM. The role of exercise and PGC1α in inflammation and chronic disease. Nature. 2008;454(7203):463–469. DOI:10.1038/nature07206.

22. Boström P, Wu J, Jedrychowski MP, et al. A PGC1α-dependent myokine that drives browning of white fat and thermogenesis. Nature. 2012;481(7382):463–468. DOI:10.1038/nature10777.

23. Vosselman MJ, Hoeks J, Brans B, et al. Low brown adipose tissue activity in endurance-trained compared with lean sedentary men. Int J Obes (Lond). 2015;39(12):1696–702. DOI: 10.1038/ijo.2015.130.

24. Nakhuda А, Josse AR, Gburcik V, et al. Biomarkers of browning of white adipose tissue and their regulation during exercise- and diet-induced weight loss. Am J Clin Nutr. 2016;104:557–65. DOI: 10.3945/ajcn.116.132563.

25. Abbasi M, Fan Z, Dawson JA, et al. Transdermal Delivery of Metformin Using Dissolving Microneedles and Iontophoresis Patches for Browning Subcutaneous Adipose Tissue. Pharmaceutics. 2022;14:879. DOI:10.3390/pharmaceutics14040879.

26. Hiradate R, Khalil IA, Matsuda A, et al. A novel dual-targeted rosiglitazone-loaded nanoparticle for the prevention of diet-induced obesity via the browning of white adipose tissue. J Control Release. 2021;10:665–675. DOI:10.1016/j.jconrel.2020.10.002.

27. Sentis SC, Oelkrug R, Mittag J. Thyroid hormones in the regulation of brown adipose tissue thermogenesis. Endocr Connect. 2021;10(2):106–R115. DOI:10.1530/EC-20-0562.

28. Johann K, Cremer AL, Fischer AW, et al. Cell Rep. 2019;27(11):3385–3400. DOI:e3.10.1016/j.celrep.2019.05.054.

29. Winifred W, Brijesh K, Lesmana R, et al. Thyroid hormone (T3) stimulates brown adipose tissue activation via mitochondrial biogenesis and mTOR-mediated mitophagy. Autophagy. 2019;15:131–150. DOI:10.1080/15548627.2018.1511263.

30. De Oliveira M, Mathias LS, Rodrigues BM, et al. The roles of triiodothyronine and irisin in improving the lipid profile and directing the browning of human adipose subcutaneous cells. Molecular and Cellular Endocrinology. 2020;506:110744. DOI:10.1016/j.mce.2020.110744.

31. Guerra C, Roncero C, Porras A, et al. Triiodothyronine induces the transcription of the uncoupling protein gene and stabilizes its mRNA in fetal rat brown adipocyte primary cultures. J. Biol. Chem. 1996;271:2076–2081. DOI:10.1074/jbc.271.4.2076.

32. Lуpez M, Varela L, Vázquez MJ, et al. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat Med. 2010;16(9):1001–8. DOI:10.1038/nm.2207.

33. Liu S, Shen S, Yan Y, et al. Triiodothyronine (T3) promotes brown fat hyperplasia via thyroid hormone receptor α mediated adipocyte progenitor cell proliferation. Nat Commun. 2022;13(1):3394. DOI:10.1038/s41467-022-31154-1.

34. Weiner J, Hankir M, Heiker JT, et al. Thyroid hormones and browning of adipose tissue. Molecular and Cellular Endocrinology. 2017;15:156–159. DOI:10.1016/j.mce.2017.01.011.

35. Skarulis MC, Celi FS, Mueller E, et al. Thyroid hormone induced brown adipose tissue and amelioration of diabetes in a patient with extreme insulin resistance. J Clin Endocrinol Metab. 2010;95(1):256–62. DOI:10.1210/jc.2009-0543.

36. Broeders EPM, Vijgen GHEJ, Havekes B, et al. Thyroid hormone activates brown adipose tissue and increases non-shivering thermogenesis - a cohort study in a group of thyroid carcinoma patients. PLoS ONE. 2016;11(1):e0145049. DOI:10.1371/journal.pone.0145049.

37. Heinen CA, Zhang Z, Klieverik LP, et al. Effects of intravenous thyrotropin-releasing hormone on (18) F-fluorodeoxyglucose uptake in human brown adipose tissue: a randomized controlled trial. Eur J Endocrinol. 2018;179(1):31–8. DOI:10.1530/EJE-17-0966.

38. Martínez-Sánchez N, Moreno-Navarrete JM, Contreras C, et al. Thyroid hormones induce browning of white fat. J Endocrinol. 2017;232(2):351–362. DOI:10.1530/JOE-16-0425.

39. Wang XY, You LH, Cui XW, et al. Evaluation and optimization of differentiation conditions for human primary brown adipocytes. Sci Rep. 2018;8(1):5304. DOI:10.1038/s41598-018-23700-z.

40. Hollingsworth DR, Amatruda TT, Scheig R. Quantitative and qualitative effects of L-triiodothyronine in massive obesity. Metabolism Clin Exp. 1970;19(11):934–945. DOI:10.1016/0026-0495(70)90040-5.

41. Biondi B, Kahaly GJ. Cardiovascular involvement in patients with different causes of hyperthyroidism. Nat Rev Endocrinol. 2010;6(8):431–43. DOI:10.1038/nrendo.2010.105.

42. Babenko AY, Bairamov A, Grineva Е, et al. Thyreotoxic Cardiomyopathy. In the book: Cardiomyopathies. InTech: Moskow, 2011. Charter 25. P. 553–580. In Russian [Бабенко А.Ю., Байрамов А.А., Гринева Е.Н. и др. Тиреотоксические кардиомиопатии. В кн.: Кардиомиопатии. М.: Медицинское издательство, 2011. C. 553–580].

43. Aldiss P, Betts J, Sale C, et al. Exercise-induced ‘browning’ of adipose tissues. Metabolism. 2018;81:63–70. DOI:10.1016/j.metabol.2017.11.009.

44. Cao W, Medvedev AV, Daniel KW, et al. beta-Adrenergic activation of p38 MAP kinase in adipocytes: cAMP induction of the uncoupling protein 1 (UCP1) gene requires p38 MAP kinase. J Biol Chem. 2001;276(29):27077–27082. DOI:10.1074/jbc.M101049200.

45. Y-Hassan S, Falhammar H. Cardiovascular Manifestations and Complications of Pheochromocytomas and Paragangliomas. J Clin Med. 2020;9(8):2435. DOI:10.3390/jcm9082435.

46. Liu Z, Liao W, Yin X, et al. Resveratrol-induced brown fat-like phenotype in 3T3-L1 adipocytes partly via mTOR pathway. Food Nutr Res. 2020;14:64. doi: 10.29219/fnr.v64.3656.

47. Rotstein A, Inbar O, Vaisman N. The effect of sibutramine intake on resting and exercise physiological responses. Ann Of Nutr Metab. 2008;52(1):17–23. DOI:10.1159/000114290.

48. Hansen DL, Toubro S, Stock MJ, et al. Thermogenic effects of sibutramine in humans. Am J Clin Nutr. 1998;68:1180–6. DOI:10.1093/ajcn/68.6.1180.

49. Saraç F, Pehlivan M, Çelebi G, et al. Effects of sibutramine on thermogenesis in obese patients assessed via immersion calorimetry. Adv Ther. 2006;23(6):1016–29. DOI:10.1007/BF02850222.

50. Hao L, Scott S, Abbasi M, et al. Beneficial metabolic effects of mirabegron in vitro and in highfat diet-induced obese mice. J Pharmacol Exp Ther. 2019;369(3):419–427. DOI:10.1124/jpet.118.255778.

51. Finlin BS, Memetimin H, Zhu B, et al. The β3-adrenergic receptor agonist mirabegron improves glucose homeostasis in obese humans.J Clin Investigation. 2020;130(5):2319–2331. DOI:10.1172/JCI134892.

52. Cypess AM, Weiner LS, Roberts-Toler C, et al. Activation of human brown adipose tissue by a β3- adrenergic receptor agonist. Cell Metab. 2015;21(1):33-38. DOI:10.1016/j.cmet.2014.12.00.

53. O’Mara AE, Johnson JW, Linderman JD, et al. Chronic mirabegron treatment increases human brown fat, HDL cholesterol, and insulin sensitivity. J Clin Invest. 2020;130(5):2209–2219. DOI:10.1172/JCI131126.

54. Than A, Liang K, Xu S, et al. Transdermal Delivery of Anti-Obesity Compounds to Subcutaneous Adipose Tissue with Polymeric Microneedle Patches. Small Metods. 2017;1(11):1700269. DOI:10.1002/smtd.201700269.

55. Xie Y, Shao R, Lin Y, et al. Improved Therapeutic Efficiency against Obesity through Transdermal Drug Delivery Using а Microneedle Arrays. Pharmaceutics. 2021;13(6):827. DOI:10.3390/pharmaceutics13060827.

56. Price NL, Gomes AP, Ling AJ, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 2012;15(5):675–90. DOI:10.1016/j.cmet.2012.04.003.

57. Zu Y, Overby H, Ren G, et al. Resveratrol liposomes and lipid nanocarriers: comparison of characteristics and inducing browning of white adipocytes. Colloids Surf B: Biointerfaces. 2018;164:414–23 DOI:10.1016/j.colsurfb.2017.12.044.

58. Yoshino J, Conte C, Fontana L, et al. Resveratrol supplementation does not improve metabolic function in nonobese women with normal glucose tolerance.Cell Metab. 2012;16(5):658–64. DOI:10.1016/j.cmet.2012.09.015.

59. Gospin R, Sandu O, Gambina K, et al. Resveratrol improves insulin resistance with anti-inflammatory and ‘browning’ effects in adipose tissue of overweight humans. Journal of Investigative Medicine. 2016;3:814–815. DOI:10.1136/jim-2016-000080.35.

60. Oliveira FR, Mamede M, Bizzi MF, et al. Effects of Short Term Metformin Treatment on Brown Adipose Tissue Activity and Plasma Irisin Levels in Women with Polycystic Ovary Syndrome: A Randomized Controlled Trial. Horm Metab Res. 2020;52:718–723. DOI:10.1055/a-1157-0615.

61. Palacios T, Vitetta L, Coulson S, et al. Targeting the Intestinal Microbiota to Prevent Type 2 Diabetes and Enhance the Effect of Metformin on Glycaemia: A Randomised Controlled Pilot Study. Nutrients. 2020; 12(7):2041. DOI:10.3390/nu12072041.

62. Cruciani S, Garroni G, Pala R, et al. Metformin and vitamin D modulate adipose-derived stem cell differentiation towards the beige phenotype. Adipocyte. 2022;11(1):356–365. DOI:10.1080/21623945.2022.2085417.

63. Kim EK, Lee SH, Jhun JY, et al. Prevents Fatty Liver and Improves Balance of White/Brown Adipose in an Obesity Mouse Model by Inducing FGF21. Mediators Inflamm. 2016;5813030. DOI:10.1155/2016/5813030.

64. Hong-Hong N, Jiong L, Shu-Lan Q. Reply to “Methodological issues in meta-analysis of the metformin effects on simple obesity”. Endocrine. 2018;62:528–534. DOI:10.1007/s12020-019-01971-4.

65. Grant PJ. The effects of high and mediumdose metformin therapy on cardiovascular risk factors in patients with type II diabetes. Diabetes Care. 1996;19:64–6. DOI:10.2337/diacare.19.1.64.

66. DeFronzo RA, Goodman AM. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. The Multicenter Metformin Study Group. NEJM. 1995;333:541–9. DOI:10.1056/NEJM19950831333090.

67. Kaur G, Grewal J, Jyoti K, et al. Oral controlled and sustained drug delivery systems: Concepts, advances, preclinical, and clinical status. In Drug Targeting and Stimuli Sensitive Drug Delivery Systems; Grumezescu, A.M.: ed.: NY: William Andrew Publishing. 2018. Chapter 15. P. 567–626.

68. Kim H, Park H, Lee SJ. Effective method for drug injection into subcutaneous tissue. Sci Rep. 2017;7:9613. DOI:10.1038/s41598-017-10110-w.

69. Yuan T, Li J, Zhao W-G, et al. Effects of metformin on metabolism of white and brown adipose tissue in obese C57BL/6J mice. Diabetol. Metab Syndr. 2019;27:96. DOI:10.1186/s13098-019-0490-2.

70. Fayyad AM, Khan AA, Abdallah SH, et al. Rosiglitazone enhances browning adipocytes in association with MAPK and PI3-K pathways during the differentiation of telomerase-transformed mesenchymal stromal cells into adipocytes. Int J Mol Sci. 2019;20(7):1618. DOI:10.3390/ijms20071618.

71. Kroon T, Harms M, Maurer S, et al. PPARγ and PPARα synergize to induce robust browning of white fat in vivo. Mol Metab. 2020;36:100964. DOI:10.1016/j.molmet.2020.02.007.

72. MacDonald JA, Storey KB. cAMP-dependent protein kinase from brown adipose tissue: temperature effects on kinetic properties and enzyme role in hibernating ground squirrels. J Comp Physiol B Biochem Syst Environ Physiol. 1998;168(7):513–25. DOI:10.1007/s003600050172.

73. Imai T, Takakuwa R, Marchand S, et al. Peroxisome proliferator-activated receptor γ is required in mature white and brown adipocytes for their survival in the mouse. Proc Natl Acad Sci. 2004;101:4543–4547. DOI:10.1073/pnas.0400356101.

74. Giordano A, Centemeri C, Zingaretti MC, et al. Sibutramine-dependent brown fat activation in rats: an immunohistochemical study. International Journal of Obesity. 2002;26(3):354–60. DOI:10.1038/sj.ijo.0801926.

75. Ohno H, Shinoda K, Spiegelman BM, et al. PPARγ agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metabol. 2012;15:395–404. DOI:10.1016/j.cmet.2012.01.019.

76. Zhang Y, Jicheng Y, Wen D, et al. The potential of a microneedle patch for reducing obesity. Expert Opin Drug Deliv. 2018;15(5):431–433. DOI:10.1080/17425247.2018.1449831.

77. Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005;1(6):361–70.

78. Loh RKC, Formosa MF, Eikelis N, et al. Pioglitazone reduces cold-induced brown fat glucose uptake despite induction of browning in cultured human adipocytes:a randomised, controlled trial in humans. Diabetologia. 2018;61(1):220–230. DOI:10.1007/s00125-017-4479-9.

79. Lin K, Dong C, Zhao B, et al. Glucagon-like peptide-1 receptor agonist regulates fat browning by altering the gut microbiota and ceramide metabolism. MedComm. 2023;20:e416. DOI:10.1002/mco2.416.

80. Gutierrez AD, Gao Z, Hamidi V, et al. Anti-diabetic effects of GLP1 analogs are mediated by thermogenic interleukin-6 signaling in adipocytes. Cell Rep Med. 2022;3:100813. DOI:10.1016/j.xcrm.2022.100813.

81. Badman MK, Pissios P, Kennedy AR, et al. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 2007;5(6):426–37. DOI:10.1016/j.cmet.2007.05.002. PMID: 17550778.

82. Choi S-S, Kim E-S, Jung J-E, et al. PPARγ Antagonist Gleevec Improves Insulin Sensitivity andPromotes the Browning of White Adipose Tissue. Diabetes. 2016;65(4):829–39. DOI:10.2337/db15-1382.

83. Fang S, Suh JM, Reilly SM, et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med. 2015;21(2):159–165. DOI:10.1038/nm.3760.

84. Jiang L, Zhang H, Xiao D, et al. Farnesoid X receptor (FXR): Structures and ligands. Computational and Structural Biotechnology Journal. 2021;19:2148–2159. DOI:10.1016/j.csbj.2021.04.029.

85. Morón-Ros S, Uriarte I, Berasain C, et al. FGF15/19 is required for adipose tissue plasticity in response to thermogenic adaptations. Mol Metab. 2021;43:101113. DOI:10.1016/j.molmet.2020.101113.

86. Yin W, Rajvanshi PK, Rogers HM, et al. Erythropoietin regulates energy metabolism through EPO-EpoR-RUNX1 axis. Nat Commun. 2024;15(1):8114. DOI:10.1038/s41467-024-52352-z.

87. Kodo K, Sugimoto S, Nakajima H, et al. Erythropoietin (EPO) ameliorates obesity and glucose homeostasis by promoting thermogenesis and endocrine function of classical brown adipose tissue (BAT) in dietinduced obese mice. PLoS One. 2017;12(3):e0173661. DOI:10.1371/journal.pone.0173661.

88. Zhang R, Chen L, Ge J-M, et al. Effect of EPO on PRDM16, FGF21 expression and STAT phosphorylation of brown adipose tissue in HFD mice. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2018;34(4):294–298. DOI:10.12047/j.cjap.5654.2018.068.

89. Lee J, Walter MF, Korach KS, Noguchi CT. Erythropoietin reduces fat mass in female mice lacking estrogen receptor alpha. Mol Metab. 2021;45:101142. DOI:10.1016/j.molmet.2020.101142.

90. Beiroa D, Imbernon M, Gallego R, et al. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes. 2014;63(10):3346–58. DOI:10.2337/db14-0302.

91. Xu F, Lin B, Zheng X, et al. GLP-1 receptor agonist promotes brown remodelling in mouse white adipose tissue through SIRT1. Diabetologia. 2016;59(5):1059–1069. DOI:10.1007/s00125-016-3896-5.

92. Janssen LG, Nahon KJ, Bracké KF, et al. Twelve weeks of exenatide treatment increases [18F] fluorodeoxyglucose uptake by brown adipose tissue without affecting oxidative resting energy expenditure in nondiabetic males. Metabolism. 2020;106:154167. DOI:10.1016/j.metabol.2020.154167.

93. Stafeev M, Agareva S, Michurina A, et al. Semaglutide 6-months therapy of type 2 diabetes mellitus restores adipose progenitors potential to develop metabolically active adipocytes. European Journal of Pharmacology. 2024;970:176476. In Russian [Стафеев М., Агарева С., Мичурина А. и др. 6-месячная терапия сахарного диабета 2 типа семаглутидом восстанавливает потенциал жировых предшественников для развития метаболически активных адипоцитов. Европейский журнал фармакологии. 2024;970:4–8]. https://doi.org/10.1016/j.ejphar.2024.176476.


Review

For citations:


Tuchina T.P., Kononova Yu.A., Zasypkin G.G., Babenko A.Yu. Brown or beige adipose tissue – a target for metabolic health therapy? Russian Journal for Personalized Medicine. 2025;5(1):6-28. (In Russ.) https://doi.org/10.18705/2782-3806-2025-5-1-6-28. EDN: TZSKZE

Views: 112


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3806 (Print)
ISSN 2782-3814 (Online)