Artificial intelligence in experimental studies and in drug design
https://doi.org/10.18705/2782-3806-2025-5-1-58-65
EDN: WXFXFJ
Abstract
The paper addresses the role of Artificial intelligence (A) in modern drug design and experimental work in biomedicine. It is shown how AI technologies can accelerate discovery and innovations and decrease the time of translational cycle. Advantages of AI and modern approaches are presented.
About the Authors
M. M. GalagudzaRussian Federation
Galagudza Мikhail М., MD, DSc, director of the Institute Experimental Medicine which is a structural unit; professor and corresponding member of the Russian
Academy of Sciences
Akkuratova str., 2, Saint Petersburg, 197341
Yа. G. Toropova
Russian Federation
Toropova Yаna G., Doctor of Biological Sciences, Deputy Director for Scientific Work at the Institute of Experimental Medicine
Akkuratova str., 2, Saint Petersburg, 197341
A. O. Konradi
Russian Federation
Konradi Alexandra O., PhD, MD, Professor, Academician of the Russian Academy of Sciences, Deputy Director General for Research; Head of the Research Institute of Arterial Hypertension, Head of the Department of Healthcare Management and Economics at the Institute of Medical Education
Akkuratova str., 2, Saint Petersburg, 197341
References
1. Bali J, Garg R, Bali RT. Artificial intelligence (AI) in healthcare and biomedical research: Why a strong computational/AI bioethics framework is required? Indian J Ophthalmol. 2019;67:3–6.
2. Mitchell TM. Machine Learning. Nachdr. New York: McGraw-Hill. 2013.
3. Cortes C, Vapnik V. Supportvector networks. Mach Learn. 1995;20:273–97.
4. Khatri P, Roedder S, Kimura N, et al. A common rejection module (CRM) for acute rejection across multiple organs identifies novel therapeutics for organ transplantation. J Exp Med. 2013;210:2205–21.
5. Bzdok D, Altman N, Krzywinski M. Statistics versus machine learning. Nat Methods. 2018;15:233–4.
6. Colic S, Wither RG, Lang M, et al. Prediction of antiepileptic drug treatment outcomes using machine learning. J Neural Eng. 2017;14:016002.
7. Sequencing and beyond: Integrating Molecular “Omics” for Microbial Community Profiling | Nature Reviews Microbiology. Available from: https://www.nature.com/articles/nrmicro3451. [Last accessed on 2023 Nov 24].
8. A Movement Ecology Paradigm for Unifying Organismal Movement Research PNAS. Available from: https://www.pnas.org/doi/full/100.1073/pnas.0800375105. [Last accessed on 2023 Nov 24].
9. DeepLabCut: Markerless Pose Estimation of UserDefined Body Parts With Deep Learning. Nature Neuroscience. Available from https://www.nature.com/articles/s41593-018-0209-y. [Last accessed on 2023 Dec 16].
10. Regularized S-map for Inference and Forecasting with Noisy Ecological Time Series — Cenci — 2019 — Methods in Ecology and Evolution — Wiley Online Library. Available from: https://besjournals.onlinelibrary.wiley.com/doi/10.1111/2041-210X.13150. [Last accessed on 2023 Nov 24].
11. Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks | ACS Central Science. Available from: https://pubs.acs.org/doi/10.1021/acscentsci. 7b00512. [Last accessed on 2023 Nov 24].
12. Schneider G. Automating drug discovery. Nat Rev Drug Discov. 2018;17:97–113.
13. Colombo G, Agabio R, Lobina C, et al. Sardinian alcohol-preferring rats: A genetic animal model of anxiety. Physiol Behav. 1995;57:1181–5.
14. Dzieweczynski TL, Gill CE, Perazio CE. Opponent familiarity influences the audience effect in male — Male interactions in Siamese fighting fish. Anim Behav. 2012;83:1219–24.
15. Ekins S, Gerlach J, Zorn KM, et al. Repurposing approved drugs as inhibitors of K (v) 7.1 and Na (v) 1.8 to Treat Pitt Hopkins syndrome. Pharm Res. 2019;36:137.
16. Heyne HO, Baez-Nieto D, Iqbal S, et al. Predicting functional effects of missense variants in voltagegated sodium and calcium channels. Sci Transl Med. 2020;12:eaay6848.
17. Vatansever S, Schlessinger A, Wacker D, et al. Artificial intelligence and machine learningaided drug discovery in central nervous system diseases: Stateofthearts and future directions. Med Res Rev. 2021;41:1427–73.
18. Hartung T. ToxAIcology — The evolving role of artificial intelligence in advancing toxicology and modernizing regulatory science. ALTEX. 2023;40:559–70.
19. Cherkasov A, Muratov EN, Fourches D, et al. QSAR modeling: Where have you been? Where are you going to? J Med Chem. 2014;57:4977–5010.
20. Mayr A, Klambauer G, Unterthiner T, Hochreiter S. DeepTox: Toxicity prediction using deep learning. Front Environ Sci2016;3. Available from: https://www.frontiersin.org/articles/10.3389/fenvs.2015.00080. [Last accessed on 2024 Jan 18].
21. Sharma B, Chenthamarakshan V, Dhurandhar A, et al. Accurate clinical toxicity prediction using multitask deep neural nets and contrastive molecular explanations. Sci Rep. 2023;13:4908.
22. Limbu S, Zakka C, Dakshanamurthy S. Predicting doserange chemical toxicity using novel hybrid deep machine-learning method. Toxics. 2022;10:706.
23. Pu L, Naderi M, Liu T, et al. eToxPred: A machine learningbased approach to estimate the toxicity of drug candidates. BMC Pharmacol Toxicol. 2019;20:2.
24. Costabal FS, Matsuno K, Yao J, et al. Machine learning in drug development: Characterizing the effect of 30 drugs on the QT interval using Gaussian process regression, sensitivity analysis, and uncertainty quantification. Comput Methods Appl Mech Eng. 2019;348:313–33.
25. The Ethics of Algorithms: Mapping the Debate — Brent Daniel Mittelstadt, Patrick Allo, Mariarosaria Taddeo, Sandra Wachter, Luciano Floridi; 2016. Available from: https://journals.sagepub.com/doi/full/10.1177/2053951716679679. [Last accessed on 2023 Nov 24].
26. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement. BMC Med. 2015;13:1.
27. Sahu A, Mishra J, Kushwaha N. Artificial Intelligence (AI) in Drugs and Pharmaceuticals. Comb Chem High Throughput Screen. 2022;25(11):1818–1837. DOI:10.2174/1386207325666211207153943. PMID: 34875986.
28. Sarkar C, Das B, Rawat VS, et al. Artificial Intelligence and Machine Learning Technology Driven Modern Drug Discovery and Development. Int J Mol Sci. 2023 Jan 19;24(3):2026. DOI:10.3390/ijms24032026. PMID: 36768346; PMCID: PMC9916967.
29. Gupta R, Srivastava D, Sahu M, et al. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Divers. 2021 Aug;25(3):1315–1360. DOI:10.1007/s11030-021-10217-3. Epub 2021 Apr 12. PMID: 33844136; PMCID: PMC8040371.
30. Shiammala PN, Duraimutharasan NKB, Vaseeharan B, et al. Exploring the artificial intelligence and machine learning models in the context of drug design difficulties and future potential for the pharmaceutical sectors. Methods. 2023 Nov;219:82–94. DOI:10.1016/j.ymeth.2023.09.010. Epub 2023 Sep 29. PMID: 37778659.
31. Yang X, Wang Y, Byrne R, et al. Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery. Chem Rev. 2019 Sep 25;119(18):10520–10594. DOI:10.1021/acs.chemrev.8b00728. Epub 2019 Jul 11. PMID: 31294972.
32. Schneider G, Clark DE. Automated Automated de novo drug design: Are we nearly there yet drug design: Are we nearly there yet? Angew. Chem. Int. Ed. Engl. 2019;58(32):10792–10803. http://dx.doi.org/10.1002/anie.201814681 PMID: 30730601
33. Schneider G. Generative models for artificiallyintelligent molecular design. Mol. Inform. 2018;37(1–2):1880131. http://dx.doi.org/10.1002/minf.201880131 PMID: 29442446
34. Putin E, Asadulaev A, Ivanenkov Y, et al. Reinforced Adversarial Neural Computer for de novo Molecular Design. J. Chem. Inf. Model. 2018;58(6):1194–1204. http://dx.doi.org/10.1021/acs.jcim.7b00690 PMID: 29762023
35. Hayik SA, Dunbrack R, Jr, Merz KM, Jr. A mixed QM/MM scoring function to predict proteinligand binding affinity. J. Chem. Theory Comput. 2010;6(10):3079–3091. http://dx.doi.org/10.1021/ct100315g PMID: 21221417
36. Paul D, Sanap G, Shenoy S, et al. Artificial intelligence in drug discovery and development. Drug Discov. Today. 2021;26(1):80–93. http://dx.doi.org/10.1016/j.drudis.2020.10.010 PMID: 33099022
37. Ghosh A, Choudhary G, Medhi B. The pivotal role of artificial intelligence in enhancing experimental animal model research: A machine learning perspective. Indian J Pharmacol. 2024 Jan 1;56(1):1–3.
Review
For citations:
Galagudza M.M., Toropova Y.G., Konradi A.O. Artificial intelligence in experimental studies and in drug design. Russian Journal for Personalized Medicine. 2025;5(1):58-65. (In Russ.) https://doi.org/10.18705/2782-3806-2025-5-1-58-65. EDN: WXFXFJ