Preview

Russian Journal for Personalized Medicine

Advanced search

Studies of immunotherapy: the experience of using dendritic vaccines in the treatment of patients with cancer

https://doi.org/10.18705/2782-3806-2025-5-3-219-229

EDN: SFGWBB

Abstract

Introduction. Personalized medicine is a revolutionary approach to treatment based on the fact that genetic characteristics, physiological processes, environmental influences and lifestyle form an individual profile that must be taken into account when developing a treatment strategy. This is especially true in diseases with a complex pathogenesis and low effectiveness of standard treatment methods, for example, in gliomas with a high degree of malignancy. Gliomas, which occupy up to 46 % of all tumors of the CNS, pose a serious problem for oncology. Even with the use of combination therapy, including surgery, radiation and chemotherapy, the five-year survival rate of patients remains extremely low, and does not exceed 10 %. This tragic statistic pushes researchers to search for new, more effective treatments. Aim. To substantiate the expediency of using cellular immunotherapy, as well as allogeneic (donor) immunocompetent cells injected directly into the cerebrospinal fluid in patients with recurrent gliomas. Materials and methods. A group of five patients aged 2 to 16 years was formed: three were diagnosed with anaplastic astrocytoma (AA), one of the most common forms of gliomas. One patient suffered from glioblastoma multiforme (MG), the most aggressive and fastest-growing form of glioma, and he had a third recurrence of the disease, indicating a high degree of tumor resistance to previous treatments. The fifth patient was diagnosed with diffuse glioma (DG) of the brain stem, the localization of which excluded surgical intervention. The average time to the first relapse in patients was 12 months (4–16 months), to the second — 5 months (1–8 months). This illustrates the rapid progression of the disease and the critical need for new treatment strategies. The immunotherapy protocol used in the study consisted of two main components. First, patients were given an autologous vaccine based on dendritic cells (DV), specialized cells of the immune system capable of “presenting” tumor antigens to T lymphocytes, activating the immune response against malignant cells. The use of autologous dendritic cells minimizes the risk of rejection and side effects. Secondly, intrathecal/intraventricular injections of allogeneic immunocompetent cells were an important component of therapy. This is a key point of the study, since the introduction of donor cells directly into the central nervous system allows for a high concentration of immune cells in the tumor area, enhancing the antitumor effect. Results. Two out of three AA patients achieved a significant interval without disease progression — 67 and 71 months, respectively. These data indicate a potentially high efficacy of the combined immunotherapy used. Moreover, a patient with a third MG relapse who has exhausted standard treatment options is alive without additional therapy after 15 years. Conclusion. Since the data are based on a small number of patients, further studies are needed to confirm the efficacy and safety of this method. Further research should focus on optimizing the treatment protocol, identifying the most effective cell combinations, and increasing the patient sample to obtain more reliable statistical data.

About the Author

Rykov M. Yu.
Russian State Social University, Moscow, Russia; Central Research Institute of Informatization and Healthcare Organization, Moscow, Russia
Russian Federation

Rykov Maksim Yu., PhD, Associate Professor, Foreign Member (Academician) of the National Academy of
Sciences and Arts of the Republic of Serbia, Head of
the Department of Pediatrics; Chief Specialist of the Project and Information Support Department



References

1. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016 Jun;131(6):803–20. DOI:10.1007/s00401-016-1545-1.

2. Thakkar JP, Dolecek TA, Horbinski C, et al. Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomarkers Prev. 2014 Oct;23(10):1985–96. DOI:10.1158/1055-9965.EPI-14-0275.

3. Stummer W, Reulen HJ, Meinel T, et al. ALA-Glioma Study Group. Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery. 2008 Mar;62(3):564–76; discussion 564–76. DOI:10.1227/01.neu.0000317304.31579.17.

4. Cui Y, Tha KK, Terasaka S, et al. Prognostic Imaging Biomarkers in Glioblastoma: Development and Independent Validation on the Basis of Multiregion and Quantitative Analysis of MR Images. Radiology. 2016 Feb;278(2):546–53. DOI:10.1148/radiol.2015150358.

5. Ellingson BM. Radiogenomics and imaging phenotypes in glioblastoma: novel observations and correlation with molecular characteristics. Curr Neurol Neurosci Rep. 2015 Jan;15(1):506. DOI:10.1007/s11910-014-0506-0.

6. Hanif F, Muzaffar K, Perveen K, et al. Glioblastoma Multiforme: A Review of its Epidemiology and Pathogenesis through Clinical Presentation and Treatment. Asian Pac J Cancer Prev. 2017 Jan 1;18(1):3–9. DOI:10.22034/APJCP.2017.18.1.3.

7. Witthayanuwat S, Pesee M, Supaadirek C, et al. Survival Analysis of Glioblastoma Multiforme. Asian Pac J Cancer Prev. 2018;19(9):2613–2617. DOI: 10.22034/APJCP.2018.19.9.2613.

8. Stupp R, Mason WP, van den Bent MJ, et al. European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96. DOI:10.1056/NEJMoa043330.

9. Ostrom QT, Cioffi G, Gittleman H, et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012-2016. Neuro Oncol. 2019 Nov 1;21(Suppl 5):v1–v100. DOI:10.1093/neuonc/noz150.

10. Auffinger B, Thaci B, Nigam P, et al. New therapeutic approaches for malignant glioma: in search of the Rosetta stone. F1000 Med Rep. 2012;4:18. DOI:10.3410/M4-18.

11. Rolle C, Sengupta S, Lesniak M. Challenges in clinical design of immunotherapy trials for malignant glioma. Neurosurg Clin N Am. 2010;21(1):201–14. DOI:10.1016/j.nec.2009.08.002.

12. Chung D, Shin H, Hong Y. A New Hope in immunotherapy for malignant gliomas: adoptive T cell transfer therapy. J Immunol Res. 2014;2014:326545. DOI:10.1155/2014/326545.

13. Kang X, Zheng Y, Hong W, et al. Recent advances in immune cell therapy for glioblastoma. Front Immunol. 2020 Oct 21;11:544563. DOI:10.3389/fimmu.2020.544563.

14. Pellegatta S, Eoli M, Cuccarini V, et al. Survival gain in glioblastoma patients treated with dendritic cell immunotherapy is associated with increased NK but not CD8 T cell activation in the presence of adjuvant temozolomide. Oncoimmunology. 2018;7(4):e1412901. DOI:10.1080/2162402X.2017.1412901.

15. Chkadua GZ, Borunova AA, Shoua IB, et al. Cryo preservation of human dendritic cells for clinical use. Rossijskij bioterapevticheskij zhurnal=Russian Journal of Biotherapy. 2019;18(4):65–75. In Russian [Чкадуа Г.З., Борунова А.А., Шоуа И.Б. и др. Криоконсервация дендритных клеток человека для клинического применения. Российский биотерапевтический журнал. 2019;18(4):65–75]. DOI:10.1765/1726-9784-2019-18-4-65-75.

16. Chkadua GZ, Zabotina TN, Burkova AA. Adaptation of the human dendritic cell culture technique from peripheral blood monocytes for clinical use. Rossijskij bioterapevticheskij zhurnal=Russian Journal of Biotherapy. 2002;1(3):56–59. In Russian [Чкадуа Г.З., Заботина Т.Н., Буркова A.A. Адаптирование методики культивирования дендритных клеток человека из моноцитов периферической крови для клинического применения. Российский биотерапевтический журнал. 2002;1(3):56–59].

17. Fundamentals of epidemiology and statistical analysis in public health and health management: a textbook. 1st ed. Moscow, 2004. 194 p. In Russian [Основы эпидемиологии и статистического анализа в общественном здоровье и управлении здравоохранением: учеб. пособие. 1-е изд. М., 2004. 194 с.].

18. Lillehei KO, Mitchell DH, Johnson SD, et al. Long-term follow-up of patients with recurrent malignant gliomas treated with adjuvant adoptive immunotherapy. Neurosurgery. 1991;28(1):16–23. DOI:10.1097/00006123-199101000-00003.

19. Hayes RL, Koslow M, Hiesiger EM, et al. Improved long-term survival after intracavitary interleukin-2 and lymphokine-activated killer cells for adults with recurrent malignant glioma. J Cancer. 1995;76(5):840–52. DOI:10.1002/1097-0142(19950901)76:5<840::aid-cncr2820760519>3.0.co;2-r.

20. Han SJ, Zygourakis C, Lim M, Parsa AT. Immunotherapy for glioma: promises and challenges. Neurosurg Clin N Am. 2012;23(3):357–70. DOI:10.1016/j.nec.2012.05.001.

21. Ardon H, Van Gool SW, Verschuere T, et al. Integration of autologous dendritic cell-based immunotherapy in the standard of care treatment for patients with newly diagnosed glioblastoma: results of the HGG2006 phase I/II trial. Cancer Immunol Immunother. 2012;61(11):2033–44. DOI:10.1007/s00262-012-1261-1.

22. Poon С, Sarkar S, Yong V, Kelly J. Glioblastoma-associated microglia and macrophages: targets for therapies to improve prognosis. Brain. 2017 Jun 1;140(6):1548–1560. DOI:10.1093/brain/aww355.

23. Jordan JT, Sun W, Hussain SF, et al. Preferential migration of regulatory T cells mediated by glioma-secreted chemokines can be blocked with chemotherapy. Cancer Immunol Immunother. 2008 Jan;57(1):123–31. DOI:10.1007/s00262-007-0336-x.

24. Zagzag D, Salnikow K, Chiriboga L, et al. Downregulation of major histocompatibility complex antigens in invading glioma cells: stealth invasion of the brain. Lab Invest. 2005 Mar;85(3):328–41. DOI:10.1038/labinvest.3700233.

25. Almuhaisen G, Alhalaseh Y, Mansour R, et al. Frequency of mismatch repair protein deficiency and PD-L1 in high-grade gliomas in adolescents and young adults (AYA). Brain Tumor Pathol. 2021 Jan;38(1):14–22. DOI:10.1007/s10014-020-00379-7.

26. Anisimov NYu, Vlasenko RYa, Kiselevskij MV, et al. Dendritic cells — an adjuvant for the induction of an immune response to a synthetic carbohydrate fragment conjugated to a protein. Immunology. 2012;33(3):123–128. In Russian [Анисимов Н.Ю., Власенко Р.Я., Киселевский М.В. и др. Дендритные клетки — адъювант для индукции иммунного ответа на синтетический углеводный фрагмент, конъюгированный с белком. Иммунология. 2012;33(3):123–128].

27. Wheeler CJ, Black KL, Liu G, et al. Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients. Cancer Res. 2008 Jul 15;68(14):5955–64. DOI:10.1158/0008-5472.CAN-07-5973.

28. Yamanaka R, Homma J, Yajima N, et al. Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: Results of a clinical phase I/II trial. Clin. Cancer Res. 2005;11:4160–4167. DOI:10.1158/1078-0432.CCR-05-0120.

29. Vik-Mo EO, Nyakas M, Mikkelsen BV, et al. Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. Cancer Immunol Immunother. 2013;62(9):1499–509. DOI:10.1007/s00262-013-1453-3.

30. Ruggeri L, Capanni M, Urbani F, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295(5562):2097–2100. DOI:10.1126/science.1068440.


Review

For citations:


Yu. R.M. Studies of immunotherapy: the experience of using dendritic vaccines in the treatment of patients with cancer. Russian Journal for Personalized Medicine. 2025;5(3):219-229. (In Russ.) https://doi.org/10.18705/2782-3806-2025-5-3-219-229. EDN: SFGWBB

Views: 136


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3806 (Print)
ISSN 2782-3814 (Online)