Preview

Russian Journal for Personalized Medicine

Advanced search

Immune checkpoint inhibitor-induced myocarditis

https://doi.org/10.18705/2782-3806-2022-2-4-35-43

Abstract

Progress in conservative anticancer treatment is associated with an increase in long-term side effects of drugs in patients with successfully treated oncology. Immune checkpoint-inhibitors (ICI) belongs to group of anticancer immunotherapy. The most life threating cardiovascular adverse event are Checkpoint-associated myocarditis. This review provides information about potential mechanisms of immune related adverse events of ICI, epidemiology and clinical features of Checkpoint-associated myocarditis.

About the Authors

E. A. Kushnareva
Almazov National Medical Research Centre, World-Class Research Centre for Personalized Medicine
Russian Federation

Kushnareva Ekaterina A., junior researcher, WorldClass Research Centre for Personalized Medicine

Akkuratova str., 2, Saint Petersburg, 197341



N. D. Gavrilyuk
Almazov National Medical Research Centre, World-Class Research Centre for Personalized Medicine
Russian Federation

Gavrilyuk Natalia D., PhD, researcher, World-Class Research Centre for Personalized Medicine

Saint Petersburg



T. N. Shuginova
Almazov National Medical Research Centre, World-Class Research Centre for Personalized Medicine; Clinical Research and Practical Center for Specialized Oncological Care
Russian Federation

Shuginova Tatyana N., researcher, World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Clinical Research and Practical Center for Specialized Oncological Care

Saint Petersburg



O. M. Moiseeva
Almazov National Medical Research Centre, World-Class Research Centre for Personalized Medicine
Russian Federation

Moiseeva Olga M., MD, Director of Heart and Vessels Institute, Chief Researcher of the noncoronary heart disease department

Saint Petersburg



References

1. Hargadon KM, Johnson CE, Williams CJ. Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol [Internet]. 2018;62(April):29–39. Available from: https://doi.org/10.1016/j.intimp.2018.06.001

2. Robert C, Ribas A, Schachter J, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006): post-hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study. Lancet Oncol [Internet]. 2019;20(9):1239–51. Available from: http://dx.doi.org/10.1016/S1470-2045(19)30388-2

3. Mok TSK, Wu YL, Kudaba I, Kowalski DM, Cho BC, Turna HZ, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet. 2019;393(10183):1819–30.

4. Borghaei H, Gettinger S, Vokes EE, Chow LQM, Burgio MA, de Castro Carpeno J, et al. Fiveyear outcomes from the randomized, phase iii trials checkmate 017 and 057: nivolumab versus docetaxel in previously treated non-small-cell lung cancer. J Clin Oncol. 2021;39(7):723–33.

5. Tjulandin S, Demidov L, Moiseyenko V, Protsenko S, Semiglazova T, Odintsova S, et al. Novel PD-1 inhibitor prolgolimab: expanding non-resectable/ metastatic melanoma therapy choice. Eur J Cancer [Internet]. 2021;149:222–32. Available from: https://doi.org/10.1016/j.ejca.2021.02.030

6. Mangan BL, McAlister RK, Balko JM, Johnson DB, Moslehi JJ, Gibson A, et al. Evolving insights into the mechanisms of toxicity associated with immune checkpoint inhibitor therapy. Br J Clin Pharmacol. 2020;86(9):1778–89.

7. Raschi E, Diemberger I, Poluzzi E, De Ponti F. Reporting of immune checkpoint inhibitor-associated myocarditis. Lancet [Internet]. 2018;392(10145):383. Available from: http://dx.doi.org/10.1016/S0140-6736(18)31549-6

8. Johnson DB, Balko JM, Compton ML, Chalkias S, Gorham J, Xu Y, et al. Fulminant Myocarditis with Combination Immune Checkpoint Blockade. N Engl J Med. 2016;375(18):1749–55.

9. Cho J, Kim HS, Ku BM, Choi Y La, Cristescu R, Han J, et al. Pembrolizumab for patients with refractory or relapsed thymic epithelial tumor: An open-label phase II trial. J Clin Oncol. 2019;37(24):2162–70.

10. Jain P, Gutierrez Bugarin J, Guha A, Jain C, Patil N, Shen T, et al. Cardiovascular adverse events are associated with usage of immune checkpoint inhibitors in real-world clinical data across the United States. ESMO Open [Internet]. 2021;6(5):100252. Available from: https://doi.org/10.1016/j.esmoop.2021.100252

11. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: Integrating immunity’s roles in cancer suppression and promotion. Science (80- ). 2011;331(6024):1565–70.

12. Radoja S, Rao TD, Hillman D, Frey AB. Mice Bearing Late-Stage Tumors Have Normal Functional Systemic T Cell Responses In Vitro and In Vivo. J Immunol. 2000;164(5):2619–28.

13. Rowshanravan B, Halliday N, Sansom DM. CTLA-4: A moving target in immunotherapy. Blood. 2018;131(1):58–67.

14. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science (80- ). 1996;271(5256):1734–6.

15. Ribas A, Kefford R, Marshall MA, Punt CJA, Haanen JB, Marmol M, et al. Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J Clin Oncol. 2013;31(5):616–22.

16. Maio M, Grob JJ, Aamdal S, Bondarenko I, Robert C, Thomas L, et al. Five-year survival rates for treatment-naive patients with advanced melanoma who received ipilimumab plus dacarbazine in a phase III trial. J Clin Oncol. 2015;33(10):1191–6.

17. Sosman JA, Haanen JB, Gonzalez R, Robert C, Ph D, Schadendorf D, et al. New england journal. 2010;711–23.

18. Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992;11(11):3887–95.

19. Nishimura H, Minato N, Nakano T, Honjo T. Immunological studies on PD-1-deficient mice: Implication of PD-1 as a negative regulator for B cell responses. Int Immunol. 1998;10(10):1563–72.

20. Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motifcarrying immunoreceptor. Immunity. 1999;11(2):141– 51.

21. Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A, et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science (80- ). 2001;291(5502):319–22.

22. Chinai JM, Janakiram M, Chen F, Chen W, Kaplan M, Zang X. New immunotherapies targeting the PD-1 pathway. Trends Pharmacol Sci [Internet]. 2015;36(9):587–95. Available from: http://dx.doi.org/10.1016/j.tips.2015.06.005

23. Johnson DB, Nebhan CA, Moslehi JJ, Balko JM. Immune-checkpoint inhibitors: long-term implications of toxicity. Nat Rev Clin Oncol. 2022;19(4):254–67.

24. Das S, Johnson DB. Immune-related adverse events and anti-tumor efficacy of immune checkpoint inhibitors. J Immunother Cancer. 2019;7(1):1–11.

25. Quach HT, Dewan AK, Davis EJ, Ancell KK, Fan R, Ye F, et al. Association of Anti-Programmed Cell Death 1 Cutaneous Toxic Effects with Outcomes in Patients with Advanced Melanoma. JAMA Oncol. 2019;5(6):906–8.

26. Eggermont AMM, Kicinski M, Blank CU, Mandala M, Long GV, Atkinson V, et al. Association between Immune-Related Adverse Events and RecurrenceFree Survival among Patients with Stage III Melanoma Randomized to Receive Pembrolizumab or Placebo: A Secondary Analysis of a Randomized Clinical Trial. JAMA Oncol. 2020;6(4):519–27.

27. Flatz L, Berner F, Bomze D, Diem S, Ali OH, Fässler M, et al. Association of Checkpoint InhibitorInduced Toxic Effects with Shared Cancer and Tissue Antigens in Non-Small Cell Lung Cancer. JAMA Oncol. 2019;5(7):1043–7.

28. Dubin K, Callahan MK, Ren B, Khanin R, Viale A, Ling L, et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockadeinduced colitis. Nat Commun [Internet]. 2016;7:1–8. Available from: http://dx.doi.org/10.1038/ncomms10391

29. Andrews MC, Duong CPM, Gopalakrishnan V, Iebba V, Chen WS, Derosa L, et al. Gut microbiota signatures are associated with toxicity to combined CTLA4 and PD-1 blockade. Nat Med. 2021;27(8):1432–41.

30. Wei SC, Meijers WC, Axelrod ML, Anang NAS, Screever M, Wescott EC, et al. HHS Public Access. 2021;11(3):614–25.

31. Baban B, Liu JY, Qin X, Weintraub NL, Mozaffari MS. Upregulation of Programmed death-1 and its ligand in cardiac injury models: Interaction with GADD153. PLoS One. 2015;10(4):1–17.

32. Kushnareva E, Kushnarev V, Artemyeva A, Mitrofanova L, Moiseeva O. Myocardial PD-L1 Expression in Patients With Ischemic and Non-ischemic Heart Failure. Front Cardiovasc Med. 2022;8(January):1–8.

33. Salem JE, Manouchehri A, Moey M, LebrunVignes B, Bastarache L, Pariente A, et al. Cardiovascular toxicities associated with immune checkpoint inhibitors: an observational, retrospective, pharmacovigilance study. Lancet Oncol. 2018;19(12):1579–89.

34. Kushnareva EA, Moiseeva OM. Immune checkpoint inhibitor myocarditis: a systematic case study. Russian Journal of Cardiology. 2020;25(11):3910. In Russian

35. Puzanov I, Subramanian P, Yatsynovich YV., Jacobs DM, Chilbert MR, Sharma UC, et al. Clinical characteristics, time course, treatment and outcomes of patients with immune checkpoint inhibitor-associated myocarditis. J Immunother Cancer. 2021;9(6):1–11.


Review

For citations:


Kushnareva E.A., Gavrilyuk N.D., Shuginova T.N., Moiseeva O.M. Immune checkpoint inhibitor-induced myocarditis. Russian Journal for Personalized Medicine. 2022;2(4):35-43. (In Russ.) https://doi.org/10.18705/2782-3806-2022-2-4-35-43

Views: 275


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3806 (Print)
ISSN 2782-3814 (Online)