Modern approaches to the search for drug therapy for aortic valve calcification
Abstract
Calcific aortic valve stenosis is the most common valvular heart disease. No medical therapies are proven to be effective in holding or reducing disease progression. Therefore, aortic valve replacement remains the only available treatment option. This study discusses the application of multi-omics approaches, proteomics, epigenomics, transcriptomics to the study of valvular heart disease and how these emerging insights might translate into potential novel treatments. Moreover, a machine learning approach that could identify small molecules that correct gene networks seems to shed new light on the pathogenesis of calcification.
About the Authors
A. A. ShishkovaRussian Federation
Shishkova Anastasia A., Cardiologist of the Cardiology Department of the Clinical Diagnostic Center; Junior Researcher, Research Institute of Molecular Mechanisms of Calcification, Research Laboratory of Diseases with Excessive Calcification, Research Center of Unknown, Rare and Genetically Determined Diseases
Akkuratova str. 2, Saint Petersburg, Russia, 197341
A. A. Lobov
Russian Federation
Lobov Arseniy A., Junior Researcher, Laboratory of Regenerative Biomedicine; Researcher, Research Institute of Molecular Mechanisms of Calcification, Research Laboratory of Diseases with Excessive Calcification, Research Center of Unknown, Rare and Genetically Caused Diseases
Saint Petersburg
P. M. Dokshin
Russian Federation
Dokshin Pavel M., Junior Researcher, Research Laboratory of Molecular Cardiology and Genetics, Assistant of the Department of Biology, Faculty of Biomedical Sciences; Junior Researcher, Research Institute of Molecular Mechanisms of Calcification, Research Laboratory of Diseases with Excessive Calcification, Research Center of Unknown, Rare and Genetically Determined Diseases, National Center for Genetically Determined Diseases
Saint Petersburg
N. V. Boyarskaya
Russian Federation
Boyarskaya Nadezhda V., Junior Researcher, Laboratory of Biomedicine Regeneration; Junior Researcher, Research Institute of Mechanical Mechanisms of Calcification, Research Laboratory of Diseases with Excessive Calcification, Research Center of Unknown, Rare and Genetically Caused Diseases
Saint Petersburg
O. S. Kachanova
Russian Federation
Kachanova Olga S., Research Assistant, Research Institute of Molecular Mechanisms of Calcification, Research Laboratory of Diseases with Excessive Calcification, Research Center of Unknown, Rare and Genetically Determined Diseases
Saint Petersburg
A. B. Malashicheva
Russian Federation
Malashicheva Anna B., Dr. Sc., Head of the Research Laboratory of Molecular Cardiology and Genetics; Head of the Laboratory of Regenerative Biomedicine; Senior Researcher, Research Institute of Molecular Mechanisms of Calcification, Research Laboratory of Diseases with Excessive Calcification, Research Center of Unknown, Rare and Genetically Caused Diseases
Saint Petersburg
References
1. Bernard L, Delgado V, Rosenhek R, et al. Contemporary presentation and management of valvular heart disease the EURObservational research programme valvular heart disease II survey. Circulation. 2019;140(14):1156–1169. DOI: 10.1161/CIRCULATIONAHA.119.041080.
2. Orlovskii PI, Gritsenko VV, Yukhnev AD, et al. Artificial heart valves. SPb.: ZAO «OLMA Media GrupP». 2007. S. 9-21. In Russian
3. Misfeld M, Sievers H-H. Heart valve macro – and microstructure. Philos Trans R Soc Lond B Biol Sci. 2007;362(1484):1421–1436. DOI: 10.1098/rtsb.2007.2125.
4. Butcher JT, Mahler GJ, Hockaday LA. Aortic valve disease and treatment: The need for naturally engineered solutions. Adv Drug Deliv Rev. 2011;63(4-5):242–268. DOI: 10.1016/j.addr.2011.01.008.
5. Schoen FJ. Mechanisms of function and disease of natural and replacement heart valves. Annual Rev Pathol. 2012;7:161–183. DOI: 10.1146/annurevpathol-011110-130257.
6. Malashicheva A, Kostina A, Kostareva A, et al. Notch signaling in the pathogenesis of thoracis aortic aneurysms: a bridge between embryonic and adult states. Biochim Biophys Acta Mol Basis Dis. 2020;1866(3):165631. DOI: 10.1016/j.bbadis.2019.165631.
7. Aquila G, Kostina A, Vieceli Dalla Sega F, et al. The Notch pathway: a novel therapeutic target for cardiovascular diseases? Expert opinion on theraupetic targets. 2019;23:695–710. DOI: 10.1080/14728222.2019.1641198.
8. Rajamannan NM. Bicuspid aortic valve disease: the role of oxidative stress in Lrp5 bone formation. Cardiovasc Pathol. 2011;20(3):168–176. DOI: 10.1016/j.carpath.2010.11.007.
9. Abdulkareem N, Smelt J, Jahangiri M. Bicuspid aortic valve aortopathy: genetics, pathophysiology and medical therapy. Interact Cardiovasc Thorac Surg. 2013;17(3):554–559. DOI: 10.1093/icvts/ivt196.
10. Yetkin E., Waltensberger J. Molecular and cellular mechanisms of aortic stenosis. Int J Cardiol. 2009;135(1):4–13. DOI: 10.1016/j.ijcard.2009.03.108.
11. Irtyuga OB, Zhiduleva EV, Murtazalieva PP, et al. Pathogenetic mechanisms of the development of aortic valve calcification: a clinician’s view. Translational medicine. 2015:34–44. In Russian
12. Guerray M, Mohler III ER. Models of Aortic Valve Calcification J Investig Med. 2007;55(6):278–283. DOI: 10.2310/6650.2007.00012.
13. Otto CM, Lind BK, Kitzman DW, et al. Association aortic-valve sclerosis with cardiovascular mortality and morbidity in the elderly. N Engl J Med. 1999;341(3):142–147. DOI: 10.1056/NEJM199907153410302.
14. Ferrari R, Rizzo P. The Notch pathway: a novel target for myocardial remodeling therapy? Eur Heart J. 2014;35(32):2140–2145. DOI: 10.1093/eurheartj/ehu244.
15. Hakuno D, Kimura N, Yoshioka M, et al. Molecular mechanisms underlying the onset of degenerative aortic valve disease J Mol Med (Berl). 2009;87(1):17–24. DOI: 10.1007/s00109-008-0400-9.
16. Lai EC. Notch signaling: control of cell communication and cell fate. Development. 2004;131(5):965–973. DOI: 10.1242/dev.01074.
17. Niessen K, Karsan A. Notch signaling in the developing cardiovascular system. Am J Physiol Cell Physiol. 2007;293(1):C1–11. DOI: 10.1152/ajpcell.00415.2006.
18. Mathieu P, Boulanger M-C, Bouchareb R. Molecular biology of calcific aortic valve disease: towards new pharmacological therapies. Expert Rev Cardiovasc Ther. 2014;12(7):851–862. DOI: 10.1586/14779072.2014.923756.
19. Zhou X.L., Liu J.C. Role of Notch signaling in the mammalian heart. Braz J Med Biol Res. 2014;47(1):1–10. DOI: 10.1590/1414-431X20133177.
20. Fukuda D, Aikawa E, Swirski FK, et al. Notch ligand Delta-like 4 blockade attenuates atherosclerosis and metabolic disorders. Proc Natl Acad Sci U S A. 2012;109(27):E1868–1877. DOI: 10.1073/pnas.1116889109.
21. Garg V. Molecular genetics of aortic valve disease. Curr Opin Cardiol. 2006;21(3):180–184. DOI: 10.1097/01.hco.0000221578.18254.70.
22. Kostina A, Shishkova A, Ignatieva E, et al. Different Notch signaling in cells from bicuspid and tricuspid aortic valves. J Mol Cell Cardiol. 2018;114:211–219. DOI: 10.1016/j.yjmcc.2017.11.009.
23. Shishkova AA, Rutkovskii AV, Irtyuga OB, et al. Molecular cell mechanisms of aortic valve calcification. Translational medicine. 2015:45–52. In Russian
24. Acharya A, Hans CP, Koenig SN, et al. Inhibitory role of Notch1 in calcific aortic valve disease. PLoS One. 2011;6(11):e27743. DOI: 10.1371/journal.pone.0027743.
25. Zheng KH, Tzolos E, Dweck MR. Pathophysiology of Aortic Stenosis and Future Perspectives for Medical Therapy Cardiol Clin. 2020;38(1):1-12. DOI: 10.1016/j.ccl.2019.09.010.
26. Miller JD, Weiss RM, Heistad DD. Calcific Aortic Valve Stenosis: Methods, Models and Mechanisms. Circ Res. 2011;108(11):1392–1412. DOI: 10.1161/CIRCRESAHA.110.234138.
27. Peeters FECM, Meex SJR, Dweck MR, et al. Calcific aortic valve stenosis: hard disease in the heart. Eur Heart J. 2018;39(28):2618–2624. DOI: 10.1093/eurheartj/ehx653.
28. Pawade TA, Newby DE, Dweck MR. Calcification in aortic stenosis. The skeleton key. J Am Coll Cardiol. 2015;66(5):561–577. DOI: 10.1016/j.jacc.2015.05.066.
29. Hakuno D, Kimura N, Yoshioka M, et al. Molecular mechanisms underlying the onset of degenerative aortic valve disease. J Mol Med (Berl). 2009;87(1):17–24. DOI: 10.1007/s00109-008-0400-9.
30. Zhiduleva EV, Irtyuga OB, Shishkova AA. Cellular mechanisms of aortic valve calcification. Bulletin of Experimental Biology and Medicine. 2017;164(9):356– 360. In Russian
31. Irtyuga OB, Zhiduleva ЕV, Murtazalieva PМ, et al. The role of osteoprotegerin system/RANKL/RANK in pathogenesis of aortic stenosis. Russian Journal of Cardiology. 2018;2(154):39–43. In Russian
32. Kostina DA, Uspensky VE, Semenova DS, et al. Role of calcification in aortic degeneration. Translational Medicine. 2020;7(1):6–21. DOI: 10.18705/2311-4495- 2020-7-1-6-21. In Russian
33. Mohler ER. Mechanisms of aortic valve calcification. Am J Cardiol. 2004;94(11):1396–1402, A6. DOI: 10.1016/j.amjcard.2004.08.013.
34. Osman L, Chester AH, Sarathchandra P, et al. A novel role of the sympatho-adrenergic system in regulating valve calcification. Circulation. 2007;116(11 Suppl):I282-7. DOI: 10.1161/CIRCULATIONAHA.106.681072.
35. Shin V, Zebboudi AF, Bostrom K. Endothelial Cells Modulate Osteogenesis in Calcifying Vascular Cells. J Vasc Res. 2004;41(2):193–201. DOI: 10.1159/000077394.
36. Venardos N, Nadlonek NA, Zhan Q, et al. Aortic valve calcification is mediated by a differential response of aortic valve interstitial cells to inflammation. J Surg Res. 2014;190(1):1–8. DOI: 10.1016/j.jss.2014.03.051.
37. Helske S, Kupari M, Lindstedt KA, et al. Aortic valve stenosis: an active atheroinflammatory process. Curr Opin Lipidol. 2007;18(5):483–491. DOI: 10.1097/MOL.0b013e3282a66099.
38. Golovkin AS, Zhiduleva EV, Shishkova AA, et al. CD39 and CD73 expression in interstitial cells of calcified aortic stenosis. Russian Journal of Immunology. 2017;11(2):287-289. In Russian
39. Golovkin AS, Kudryavtsev IV, Serebryakova MK, et al. Calcification of the aortic valve: subpopulation composition of circulating T cells and purinergic regulation. Russian Journal of Immunology. 2016;10(2, 1):189-191. In Russian
40. New SPE, Aikawa E. Cardiovascular calcification: an inflammatory disease. Circ J. 2011;75(6):1305–1313. DOI: 10.1253/circj.cj-11-0395.
41. Osman L, Yacoub MH, Latif N, et al. Role of human valve interstitial cells in valve calcification and their response to atorvastatin. Circulation. 2006;114(1 Suppl):I547–552. DOI: 10.1161/CIRCULATIONAHA.105.001115.
42. Cawley PJ, Otto CM. Prevention of calcific aortic valve stenosis – fact or fiction? Ann Med. 2009;41(2):100–108. DOI: 10.1080/07853890802331394.
43. Rajamannan NM. Mechanisms of aortic valve calcification: the LDL-density-radius theory: a translation from cell signaling to physiology. Am J Physiol Heart Circ Physiol. 2010;298(1):H5–15. DOI: 10.1152/ajpheart.00824.2009.
44. Innasimuthu AL, Katz WE. Effect of bisphosphonates on the progression of degenerative aortic stenosis. Echocardiography. 2011;28(1):1–7. DOI: 10.1111/j.1540-8175.2010.01256.x.
45. Aksoy O, Cam A, Goel SS, et al. Do bisphosphonates slow the progression of aortic stenosis? J Am Coll Cardiol. 2012;59(16):1452–1459. DOI: 10.1016/j.jacc.2012.01.024.
46. Lerman DA, Prasad S, Alotti N. Denosumab could be a potential inhibitor of valvular interstitial cells calcification in vitro. Int J Cardiovasc Res. 2016;5(1):10.4172/2324-8602.1000249. DOI: 10.4172/2324-8602.1000249.
47. Butcher JT, Mahler GJ, Hockaday LA. Aortic valve disease and treatment: The need for naturally engineered solutions. Adv Drug Deliv Rev. 2011;63(4-5):242–268. DOI: 10.1016/j.addr.2011.01.008.
48. Brandenburg VM, Reinartz S, Kaesler N, et al. Slower progress of aortic valve calcification with vitamin K supplementation. Circulation. 2017;135(21):2081–2083. DOI: 10.1161/CIRCULATIONAHA.116.027011.
49. Parra-Izquierdo I, Castaños-Mollor I, López J, et al. Lipopolysaccharide and interferon-β team up to activate HIF-1β via STAT1 in normoxia and exhibit sex differences in human aortic valve interstitial cells. Biochim Biophys Acta Mol Basis Dis. 2019;1865(9):2168–2179. DOI: 10.1016/j.bbadis.2019.04.014.
50. Blaser MC, Kraler S, Luscher TF, et al. Miltiomics approaches to define calcific aortic valve disease pathogenesis. Circ Res. 2021;128(9):1371–1397. DOI: 10.1161/CIRCRESAHA.120.317979.
51. Surendan A, Edel A, Chandran M, et al. Metabolomic signature of human aortic valve stenosis. JACC Basic Transl Sci. 2020;5(12):1163–1177. DOI: 10.1016/j.jacbts.2020.10.001.
52. Baek D, Villen J, Shin C, et al. The impact of microRNAs on protein output. Nature. 2008;455(7209):64–71. DOI: 10.1038/nature07242.
53. Khudiakov AA, Smolina NA, Perepelina KI, et al. Extracellular micrornas and mitochondrial DNA as potential biomarkers of arrhythmogenic cardiomyopathy.
54. Biochemistry (Moscow). 2019;84(3):272-282. In Russian
55. Toshima T, Watanabe T, Narumi T, et al. Therapeutic inhibition of microRNA-34a ameliorates aortic valve calcification via modulation of Notch1- Runx2 signalling. Cardiovasc Res. 2020;116(5):983–994. DOI: 10.1093/cvr/cvz210.
56. Theodoris CV, Zhou P, Liu L, et al. Networkbased screen in iPSC-derived cells reveals therapeutic candidate for heart valve disease. Science. 2021;371(6530):eabd0724. DOI: 10.1126/science.abd0724.
Review
For citations:
Shishkova A.A., Lobov A.A., Dokshin P.M., Boyarskaya N.V., Kachanova O.S., Malashicheva A.B. Modern approaches to the search for drug therapy for aortic valve calcification. Russian Journal for Personalized Medicine. 2021;1(1):118-135.