Антимикробные пептиды врожденного иммунитета как прототипы новых средств борьбы с антибиотикорезистентными бактериями
Аннотация
В обзоре проводится анализ литературных данных об антимикробных пептидах (АМП) системы врожденного иммунитета как о перспективных прототипах новых антибиотических средств для преодоления антибиотикорезистентности микроорганизмов. Освещены структурно-функциональные свойства данных пептидов, приведены сведения о механизмах антимикробного действия и, кратко, об эффектах на клетки высших эукариот. Обсуждаются преимущества АМП по сравнению с конвенциональными антибиотиками и проблемы практического применения АМП. Приводятся примеры разработанных на основе АМП препаратов, находящихся на стадии клинических испытаний, обосновывается необходимость создания новых пептидных препаратов для применения в медицине в терапии инфекционных заболеваний, вызываемых устойчивыми к антибиотикам микроорганизмами.
Об авторах
О. В. ШамоваРоссия
Шамова Ольга Валерьевна, д.б.н., чл.-корр. РАН, заместитель директора по научной работе, заведующий отделом общей патологии и патофизиологии; заведующий НИЛ альтернативных антимикробных биопрепаратов
ул. Академика Павлова, д. 12, Санкт-Петербург, Россия, 197376
М. С. Жаркова
Россия
Жаркова Мария Сергеевна, к.б.н., старший научный сотрудник отдела общей патологии и патофизиологии; старший научный сотрудник НИЛ альтернативных антимикробных биопрепаратов
Санкт-Петербург
А. Н. Чернов
Россия
Чернов Александр Николаевич, научный сотрудник отдела микробной терапии; научный сотрудник отдела общей патологии и патофизиологии
Санкт-Петербург
Е. В. Владимирова
Россия
Владимирова Елизавета Васильевна, младший научный сотрудник НИЛ альтернативных антимикробных биопрепаратов
Санкт-Петербург
М. С. Сухарева
Россия
Сухарева Мария Сергеевна, младший научный сотрудник НИЛ альтернативных антимикробных биопрепаратов
Санкт-Петербург
А. С. Комлев
Россия
Комлев Алексей Сергеевич, младший научный сотрудник НИЛ альтернативных антимикробных биопрепаратов
Санкт-Петербург
О. Л. Коченда
Россия
Коченда Ольга Леонидовна, лаборант-исследователь отдела общей патологии и патофизиологии; лаборант-исследователь НИЛ альтернативных антимикробных биопрепаратов
Санкт-Петербург
Д. С. Орлов
Россия
Орлов Дмитрий Сергеевич, к.м.н., доцент, заведующий лабораторией иммунопатофизиологии отдела общей патологии и патофизиологии
Санкт-Петербург
Список литературы
1. World Health Organization. No time to wait: Securing the future from drug-resistant infections — Report to the Secretary-General of the United Nations. 2019. https://www.who.int/antimicrobial-resistance/interagency-coordination-group/IACG_final_report_EN.pdf (4 October 2021).
2. World Health Organization. Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis. 2017. https://www.who.int/publications/i/item/WHO-EMP-IAU-2017.12 (4 October 2021).
3. Jamal M, Ahmad W, Andleeb S, et al. Bacterial biofilm and associated infections. J Chin Med Assoc. 2018; 81(1):7–11. DOI: 10.1016/j.jcma.2017.07.012.
4. Vestby LK, Grønseth T, Simm R, et al. Bacterial Biofilm and its Role in the Pathogenesis of Disease. Antibiotics (Basel). 2020; 9(2):59. DOI: 10.3390/antibiotics9020059.
5. Bjarnsholt T. The role of bacterial biofilms in chronic infections. APMIS Suppl. 2013; (136):1–51. DOI: 10.1111/apm.12099.
6. Lai Y, Gallo RL. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 2009; 30(3):131–141. DOI: 10.1016/j.it.2008.12.003.
7. Riera Romo M, Pérez-Martínez D, Castillo Ferrer C. Innate immunity in vertebrates: an overview. Immunology. 2016; 148(2):125–139. DOI: 10.1111/imm.12597.
8. Kokryakov VN. Essays on innate immunity. Saint Petersburg: Nauka, 2006. 261 p. In Russian [Кокряков В.Н. Очерки о врождённом иммунитете. СПб: Наука, 2006. 261 c.].
9. Li Y, Xiang Q, Zhang Q, et al. Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides. 2012; 37(2):207–215. DOI: 10.1016/j.peptides.2012.07.001.
10. Pasupuleti M, Schmidtchen A, Malmsten M. Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol. 2012; 32(2):143–171. DOI: 10.3109/07388551.2011.594423.
11. Zasloff M. Antimicrobial peptides, innate immunity, and the normally sterile urinary tract. J Am Soc Nephrol. 2007; 18(11):2810–2816. DOI: 10.1681/ASN.2007050611.
12. Nijnik A, Hancock R. Host defence peptides: antimicrobial and immunomodulatory activity and potential applications for tackling antibiotic-resistant infections. Emerg Health Threats J. 2009; 2:e1. DOI: 10.3134/ehtj.09.001.
13. Wiesner J, Vilcinskas A. Antimicrobial peptides: the ancient arm of the human immune system. Virulence. 2010; 1(5):440–464. DOI: 10.4161/viru.1.5.12983.
14. Lehrer RI, Lu W. α-Defensins in human innate immunity. Immunol Rev. 2012; 245(1):84–112. DOI: 10.1111/j.1600-065X.2011.01082.x.
15. Wang G. Antimicrobial peptides: Discovery, design, and novel therapeutic strategies. Wallingford: CABI Publishing, 2010. 230 p.
16. Mookherjee N, Anderson MA, Haagsman HP, et al. Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov. 2020; 19(5):311–332. DOI: 10.1038/s41573-019-0058-8.
17. Pachón-Ibáñez ME, Smani Y, Pachón J, et al. Perspectives for clinical use of engineered human host defense antimicrobial peptides. FEMS Microbiol Rev. 2017; 41(3):323–342. DOI: 10.1093/femsre/fux012.
18. Huan Y, Kong Q, Mou H, et al. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front Microbiol. 2020; 11:582779. DOI: 10.3389/fmicb.2020.582779.
19. Nguyen LT, Haney EF, Vogel HJ. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 2011; 29(9):464–472. DOI: 10.1016/j.tibtech.2011.05.001.
20. Kumar P, Kizhakkedathu JN, Straus SK. Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo. Biomolecules. 2018; 8(1):4. DOI: 10.3390/biom8010004.
21. Harris F, Dennison SR, Phoenix DA. Anionic antimicrobial peptides from eukaryotic organisms. Curr Protein Pept Sci. 2009; 10(6):585–606. DOI: 10.2174/138920309789630589.
22. Phoenix DA, Dennison SR, Harris F. Antimicrobial Peptides. Singapore: Wiley-VCH, 2013. 231 p.
23. Lai R, Liu H, Hui Lee W, et al. An anionic antimicrobial peptide from toad Bombina maxima. Biochem Biophys Res Commun. 2002; 295(4):796–799. DOI: 10.1016/s0006-291x(02)00762-3.
24. Dorin JR, McHugh BJ, Cox SL, et al. Chapter 30—Mammalian Antimicrobial Peptides; Defensins and Cathelicidins. In: Tang Y-W, Sussman M, Liu D, et al. eds. Molecular Medical Microbiology. 2nd ed. Cambridge, MA, USA: Academic Press, 2015:539–565. DOI: 10.1016/B978-0-12-397169-2.00030-5.
25. Zeya HI, Spitznagel JK. Antibacterial and enzymatic basic protein from leukocyte lysosomes: separation and identification. Science. 1963; 142(3595):1085–1087. DOI: 10.1126/science.142.3595.1085.
26. Ашмарин И.П., Кокряков В.Н., Лызлова С.Н., и др. Взаимодействие катионных белков гранул и миелоперoксидазы лейкоцитов. Вопросы медицинской химии (Биомедицинская химия с 2003). 1977; 3:534–537.
27. Кокряков В.Н., Ашмарин И.П., Пигаревский В.Е. О природе некоторых фракций лизосомальных катионных белков лейкоцитов. Биохимия. 1973; 38(6):1276–1280.
28. Мазинг Ю.А. Нейтрофильные гранулоциты и система защиты организма. Архив патологии. 1991; 9:70–73.
29. Пигаревский В.Е., Ашмарин И.П., Толыбеков А.С., и др. О влиянии in vitro лейкоцитарного и тимусного гитона и их фракций на активность возбудителя менингопневмонии. Журнал микробиологии, эпидемиологии и иммунобиологии. 1975; 10:76–78.
30. Пигаревский В.Е, Кокряков В.Н., Тарос Л.Ю., и др. Антивирусные свойства дефенсинов при экспериментальной герпетической инфекции. В кн.: Патоморфология опухолей и фоновых заболева- ний. Л., 1989: 122–124.
31. Ganz T, Selsted ME, Szklarek D, et al. Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest. 1985; 76(4):1427–1435. DOI: 10.1172/JCI112120.
32. Selsted ME, Brown DM, DeLange RJ, et al. Primary structures of six antimicrobial peptides of rabbit peritoneal neutrophils. J Biol Chem. 1985; 260(8):4579–4584.
33. Selsted ME, Harwig SS, Ganz T, et al. Primary structures of three human neutrophil defensins. J Clin Invest. 1985; 76(4):1436–1439. DOI: 10.1172/JCI112121.
34. Selsted ME, Harwig SS. Purification, primary structure, and antimicrobial activities of a guinea pig neutrophil defensin. Infect Immun. 1987; 55(9):2281–2286. DOI: 10.1128/iai.55.9.2281-2286.1987.
35. Eisenhauer PB, Harwig SS, Szklarek D, et al. Purification and antimicrobial properties of three defensins from rat neutrophils. Infect Immun. 1989; 57(7):2021–2027. DOI: 10.1128/iai.57.7.2021-2027.1989.
36. Agerberth B, Charo J, Werr J, et al. The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations. Blood. 2000; 96(9):3086–3093.
37. Selsted ME, Ouellette AJ. Mammalian defensins in the antimicrobial immune response. Nat Immunol. 2005; 6(6):551–557. DOI: 10.1038/ni1206.
38. Jones DE, Bevins CL. Paneth cells of the human small intestine express an antimicrobial peptide gene. J Biol Chem. 1992; 267(32):23216–23225.
39. Valore EV, Park CH, Quayle AJ, et al. Human beta-defensin-1: an antimicrobial peptide of urogenital tissues. J Clin Invest. 1998; 101(8):1633–1642. DOI: 10.1172/JCI1861.
40. Nakayama K, Okamura N, Arai H, et al. Expression of human beta-defensin-1 in the choroid plexus. Ann Neurol. 1999; 45(5):685. DOI: 10.1002/1531-8249(199905)45:5<685::aid-ana25>3.0.co;2-6.
41. McCray PB Jr, Bentley L. Human airway epithelia express a beta-defensin. Am J Respir Cell Mol Biol. 1997; 16(3):343–349. DOI: 10.1165/ajrcmb.16.3.9070620.
42. Harder J, Bartels J, Christophers E, et al. Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. J Biol Chem. 2001; 276(8):5707–5713. DOI: 10.1074/jbc.M008557200.
43. Ghosh SK, Gerken TA, Schneider KM, et al. Quantification of human beta-defensin-2 and -3 in body fluids: application for studies of innate immunity. Clin Chem. 2007; 53(4):757–765. DOI: 10.1373/clinchem.2006.081430.
44. Shestakova T, Zhuravel E, Bolgova L, et al. Expression of human beta-defensins-1, 2 and 4 mRNA in human lung tumor tissue: a pilot study. Exp Oncol. 2008; 30(2):153–156.
45. Otte JM, Neumann HM, Brand S, et al. Expression of beta-defensin 4 is increased in human gastritis. Eur J Clin Invest. 2009; 39(2):126–138. DOI: 10.1111/j.1365-2362.2008.02071.x.
46. Pazgier M, Hoover DM, Yang D, et al. Human beta-defensins. Cell Mol Life Sci. 2006; 63(11):1294–1313. DOI: 10.1007/s00018-005-5540-2.
47. Tang YQ, Yuan J, Osapay G, et al. A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins. Science. 1999; 286(5439):498–502. DOI: 10.1126/science.286.5439.498.
48. Leonova L, Kokryakov VN, Aleshina G, et al. Circular minidefensins and posttranslational generation of molecular diversity. J Leukoc Biol. 2001; 70(3):461–464.
49. Stegemann C, Tsvetkova EV, Aleshina GM, et al. De novo sequencing of two new cyclic theta-defensins from baboon (Papio hamadryas) leukocytes by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom. 2010; 24(5):599–604. DOI: 10.1002/rcm.4424.
50. Zanetti M, Gennaro R, Romeo D. Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett. 1995; 374(1):1–5. DOI: 10.1016/0014-5793(95)01050-o.
51. Kopitar M, Ritonja A, Popovic T, et al. A new type of low-molecular mass cysteine proteinase inhibitor from pig leukocytes. Biol Chem Hoppe Seyler. 1989; 370(10):1145–1151. DOI: 10.1515/bchm3.1989.370.2.1145.
52. Zanetti M. The role of cathelicidins in the innate host defenses of mammals. Curr Issues Mol Biol. 2005; 7(2):179–196.
53. Kościuczuk EM, Lisowski P, Jarczak J, et al. Cathelicidins: family of antimicrobial peptides. A review. Mol Biol Rep. 2012; 39(12):10957–10970. DOI: 10.1007/s11033-012-1997-x.
54. Wang Y, Wang M, Shan A, et al. Avian host defense cathelicidins: structure, expression, biological functions, and potential therapeutic applications. Poult Sci. 2020; 99(12):6434–6445. DOI: 10.1016/j.psj.2020.09.030.
55. Graf M, Wilson DN. Intracellular Antimicrobial Peptides Targeting the Protein Synthesis Machinery. Adv Exp Med Biol. 2019; 1117:73–89. DOI: 10.1007/978-981-13-3588-4_6.
56. Mercer DK, O’Neil DA. Innate Inspiration: Antifungal Peptides and Other Immunotherapeutics From the Host Immune Response. Front Immunol. 2020; 11:2177. DOI: 10.3389/fimmu.2020.02177.
57. Mechkarska M, Ahmed E, Coquet L, et al. Antimicrobial peptides with therapeutic potential from skin secretions of the Marsabit clawed frog Xenopus borealis (Pipidae). Comp Biochem Physiol C Toxicol Pharmacol. 2010; 152(4):467–472. DOI: 10.1016/j.cbpc.2010.07.007.
58. Wang J, Wong ES, Whitley JC, et al. Ancient antimicrobial peptides kill antibiotic-resistant pathogens: Australian mammals provide new options. PLoS One. 2011; 6(8):e24030. DOI: 10.1371/journal.pone.0024030.
59. Roque-Borda CA, da Silva PB, Rodrigues MC, et al. Challenge in the Discovery of New Drugs: Antimicrobial Peptides against WHO-List of Critical and High-Priority Bacteria. Pharmaceutics. 2021; 13(6):773. DOI: 10.3390/pharmaceutics13060773.
60. León-Buitimea A, Garza-Cárdenas CR, Garza- Cervantes JA, et al. The Demand for New Antibiotics: Antimicrobial Peptides, Nanoparticles, and Combinatorial Therapies as Future Strategies in Antibacterial Agent Design. Front Microbiol. 2020; 11:1669. DOI: 10.3389/fmicb.2020.01669.
61. Lohner K. New strategies for novel antibiotics: peptides targeting bacterial cell membranes. Gen Physiol Biophys. 2009; 28(2):105–116. DOI: 10.4149/gpb_2009_02_105.
62. Hollmann A, Martinez M, Maturana P, et al. Antimicrobial Peptides: Interaction With Model and Biological Membranes and Synergism With Chemical Antibiotics. Front Chem. 2018; 6:204. DOI: 10.3389/fchem.2018.00204.
63. Tornesello AL, Borrelli A, Buonaguro L, et al. Antimicrobial Peptides as Anticancer Agents: Functional Properties and Biological Activities. Molecules. 2020; 25(12):2850. DOI: 10.3390/molecules25122850.
64. Li J, Koh JJ, Liu S, et al. Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design. Front Neurosci. 2017; 11:73. doi: 10.3389/fnins.2017.00073.
65. Tuerkova A, Kabelka I, Králová T, et al. Effect of helical kink in antimicrobial peptides on membrane pore formation. Elife. 2020; 9:e47946. DOI: 10.7554/eLife.47946.
66. Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol. 2005; 3(3):238–250. DOI: 10.1038/nrmicro1098.
67. Pouny Y, Rapaport D, Mor A, et al. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry. 1992; 31(49):12416–12423. DOI: 10.1021/bi00164a017.
68. Miteva M, Andersson M, Karshikoff A, et al. Molecular electroporation: a unifying concept for the description of membrane pore formation by antibacterial peptides, exemplified with NK-lysin. FEBS Lett. 1999; 462(1–2):155–158. DOI: 10.1016/s0014-5793(99)01520-3.
69. Le CF, Fang CM, Sekaran SD. Intracellular Targeting Mechanisms by Antimicrobial Peptides. Antimicrob Agents Chemother. 2017; 61(4):e02340-16. DOI: 10.1128/AAC.02340-16.
70. Park CB, Kim HS, Kim SC. Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun. 1998; 244(1):253–257. DOI: 10.1006/bbrc.1998.8159.
71. Patrzykat A, Friedrich CL, Zhang L, et al. Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob Agents Chemother. 2002; 46(3):605–614. DOI: 10.1128/AAC.46.3.605-614.2002.
72. Lehrer RI, Barton A, Daher KA, et al. Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J Clin Invest. 1989; 84(2):553–561. DOI: 10.1172/JCI114198 .
73. Subbalakshmi C, Sitaram N. Mechanism of antimicrobial action of indolicidin. FEMS Microbiol Lett. 1998; 160(1):91–96. DOI: 10.1111/j.1574-6968.1998.tb12896.x.
74. Kragol G, Lovas S, Varadi G, et al. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry. 2001; 40(10):3016–3026. DOI: 10.1021/bi002656a.
75. Scocchi M, Lüthy C, Decarli P, et al. The Proline- rich Antibacterial Peptide Bac7 Binds to and Inhibits in vitro the Molecular Chaperone DnaK. Int J Pept Res Therapeut. 2009; 15(2):147–155. DOI: 10.1007/s10989-009-9182-3.
76. Zahn M, Berthold N, Kieslich B, et al. Structural studies on the forward and reverse binding modes of peptides to the chaperone DnaK. J Mol Biol. 2013; 425(14):2463–2479. DOI: 10.1016/j.jmb.2013.03.041.
77. Zahn M, Kieslich B, Berthold N, et al. Structural identification of DnaK binding sites within bovine and sheep bactenecin Bac7. Protein Pept Lett. 2014; 21:407–412. DOI: 10.2174/09298665113206660111.
78. Krizsan A, Prahl C, Goldbach T, et al. Short proline-rich antimicrobial peptides inhibit either the bacterial 70S ribosome or the assembly of its large 50S subunit. Chembiochem. 2015; 16(16):2304–2308. DOI: 10.1002/cbic.201500375.
79. Krizsan A, Volke D, Weinert S, et al. Insect-derived proline-rich antimicrobial peptides kill bacteria by inhibiting bacterial protein translation at the 70S ribosome. Angew Chem Int Ed Engl. 2014; 53:12236–12239. DOI: 10.1002/anie.201407145.
80. Roy RN, Lomakin IB, Gagnon MG, et al. The mechanism of inhibition of protein synthesis by the proline-rich peptide oncocin. Nat Struct Mol Biol. 2015; 22:466–469. DOI: 10.1038/nsmb.3031.
81. Mardirossian M, Grzela R, Giglione C, et al. The host antimicrobial peptide Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis. Chem Biol. 2014; 21:1639–1647. DOI: 10.1016/j.chembiol.2014.10.009.
82. Mardirossian M, Barrière Q, Timchenko T, et al. Fragments of the Nonlytic Proline-Rich Antimicrobial Peptide Bac5 Kill Escherichia coli Cells by Inhibiting Protein Synthesis. Antimicrob Agents Chemother. 2018; 62(8):e00534-18. DOI: 10.1128/AAC.00534-18.
83. Brötz H, Bierbaum G, Reynolds PE, et al. The lantibiotic mersacidin inhibits peptidoglycan biosynthesis at the level of transglycosylation. Eur J Biochem. 1997; 246(1):193-199. DOI: 10.1111/j.1432-1033.1997.t01-1-00193.x.
84. Breukink E, de Kruijff B. Lipid II as a target for antibiotics. Nat Rev Drug Discov. 2006; 5(4):321–332. DOI: 10.1038/nrd2004.
85. Liu SP, Zhou L, Lakshminarayanan R, et al. Multivalent Antimicrobial Peptides as Therapeutics: Design Principles and Structural Diversities. Int J Pept Res Ther. 2010; 16(3):199–213. DOI: 10.1007/s10989-010-9230-z.
86. Guilhelmelli F, Vilela N, Albuquerque P, et al. Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front Microbiol. 2013; 4:353. DOI: 10.3389/fmicb.2013.00353.
87. Boehr DD, Draker KA, Koteva K, et al. Broad-spectrum peptide inhibitors of aminoglycoside antibiotic resistance enzymes. Chem Biol. 2003; 10(2):189–196. DOI: 10.1016/s1074-5521(03)00026-7.
88. Wimley WC, Hristova K. Antimicrobial peptides: successes, challenges and unanswered questions. J Membr Biol. 2011; 239(1–2):27–34. DOI: 10.1007/s00232-011-9343-0.
89. Lichtenstein AK, Ganz T, Nguyen TM, et al. Mechanism of target cytolysis by peptide defensins. Target cell metabolic activities, possibly involving endocytosis, are crucial for expression of cytotoxicity. J Immunol. 1988; 140(8):2686–2694.
90. Lichtenstein A. Mechanism of mammalian cell lysis mediated by peptide defensins. Evidence for an initial alteration of the plasma membrane. J Clin Invest. 1991; 88(1):93–100. DOI: 10.1172/JCI115310.
91. McKeown ST, Lundy FT, Nelson J, et al. The cytotoxic effects of human neutrophil peptide-1 (HNP1) and lactoferrin on oral squamous cell carcinoma (OSCC) in vitro. Oral Oncol. 2006; 42(7):685–690. DOI: 10.1016/j.oraloncology.2005.11.005.
92. Huang HJ, Ross CR, Blecha F. Chemoattractant properties of PR-39, a neutrophil antibacterial peptide. J Leukoc Biol. 1997; 61(5):624–629. DOI: 10.1002/jlb.61.5.624.
93. Biragyn A, Surenhu M, Yang D, et al. Mediators of innate immunity that target immature, but not mature, dendritic cells induce antitumor immunity when genetically fused with nonimmunogenic tumor antigens. J Immunol. 2001; 167(11):6644–6653. DOI: 10.4049/jimmunol.167.11.6644.
94. Dürr M, Peschel A. Chemokines meet defensins: the merging concepts of chemoattractants and antimicrobial peptides in host defense. Infect Immun. 2002; 70(12):6515–6517. DOI: 10.1128/IAI.70.12.6515-6517.2002.
95. Li J, Post M, Volk R, et al. PR39, a peptide regulator of angiogenesis. Nat Med. 2000; 6(1):49–55. DOI: 10.1038/71527.
96. Kanazawa K, Okumura K, Ogawa H, et al. An antimicrobial peptide with angiogenic properties, AG- 30/5C, activates human mast cells through the MAPK and NF-κB pathways. Immunol Res. 2016; 64(2):594–603. DOI: 10.1007/s12026-015-8759-5.
97. Koczulla R, Bals R. Cathelicidin antimicrobial peptides modulate angiogenesis. In: E. Deindl and C. Kupatt eds. Therapeutic Neovascularization-Quo Vadis? Netherlands: Springer, 2007:191–196. DOI: 10.1007/1-4020-5955-8_10.
98. Takahashi M, Umehara Y, Yue H, et al. The Antimicrobial Peptide Human β-Defensin-3 Accelerates Wound Healing by Promoting Angiogenesis, Cell Migration, and Proliferation Through the FGFR/JAK2/STAT3 Signaling Pathway. Front Immunol. 2021; 12:712781. DOI: 10.3389/fimmu.2021.712781.
99. Territo MC, Ganz T, Selsted ME, et al. Monocyte- chemotactic activity of defensins from human neutrophils. J Clin Invest. 1989; 84(6):2017–2020. DOI: 10.1172/JCI114394.
100. Niyonsaba F, Someya A, Hirata M, et al. Evaluation of the effects of peptide antibiotics human beta-defensins-1/-2 and LL-37 on histamine release and prostaglandin D(2) production from mast cells. Eur J Immunol. 2001; 31(4):1066–1075. DOI: 10.1002/1521-4141(200104)31:4<1066::aid-immu1066>3.0.co;2-#.
101. Yoshioka M, Fukuishi N, Kubo Y, et al. Human cathelicidin CAP18/LL-37 changes mast cell function toward innate immunity. Biol Pharm Bull. 2008; 31(2):212–216. DOI: 10.1248/bpb.31.212.
102. Gupta K, Kotian A, Subramanian H, et al. Activation of human mast cells by retrocyclin and protegrin highlight their immunomodulatory and antimicrobial properties. Oncotarget. 2015; 6(30):28573–28587. DOI: 10.18632/oncotarget.5611.
103. Davidson DJ, Currie AJ, Reid GS, et al. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J Immunol. 2004; 172(2):1146–1156. DOI: 10.4049/jimmunol.172.2.1146.
104. Fu L, Jin P, Hu Y, et al. KR12a6 promotes the osteogenic differentiation of human bone marrow mesenchymal stem cells via BMP/SMAD signaling. Mol Med Rep. 2020; 21(1):61–68. DOI: 10.3892/mmr.2019.10843.
105. van der Does AM, Joosten SA, Vroomans E, et al. The antimicrobial peptide hLF1-11 drives monocyte- dendritic cell differentiation toward dendritic cells that promote antifungal responses and enhance Th17 polarization. J Innate Immun. 2012; 4(3):284–292. DOI: 10.1159/000332941.
106. Zhu QZ, Hu J, Mulay S, et al. Isolation and structure of corticostatin peptides from rabbit fetal and adult lung. Proc Natl Acad Sci U S A. 1988; 85(2):592–596. DOI: 10.1073/pnas.85.2.592.
107. Zhu Q, Solomon S. Isolation and mode of action of rabbit corticostatic (antiadrenocorticotropin) peptides. Endocrinology. 1992; 130(3):1413–1423. DOI: 10.1210/endo.130.3.1311240.
108. Zhu QZ, Singh AV, Bateman A, et al. The corticostatic (anti-ACTH) and cytotoxic activity of peptides isolated from fetal, adult and tumor-bearing lung. J Steroid Biochem. 1987; 27(4–6):1017–1022. DOI: 10.1016/0022-4731(87)90184-1.
109. Cho JH, Kim SC. Non-membrane targets of antimicrobial peptides: novel therapeutic opportunities? In: Wang G, ed. Antimicrobial peptides: discovery, design and novel therapeutic strategies. Wallingford: CABI Publishing, 2010: 128–140.
110. Mangoni ML. Host-defense peptides: from biology to therapeutic strategies. Cell Mol Life Sci. 2011; 68(13):2157–2159. DOI: 10.1007/s00018-011-0709-3.
111. Alba A, López-Abarrategui C, Otero-González AJ. Host defense peptides: an alternative as antiinfective and immunomodulatory therapeutics. Biopolymers. 2012; 98(4):251–267. DOI: 10.1002/bip.22076.
112. Deslouches B, Steckbeck JD, Craigo JK, et al. Rational design of engineered cationic antimicrobial peptides consisting exclusively of arginine and tryptophan, and their activity against multidrug-resistant pathogens. Antimicrob Agents Chemother. 2013; 57(6):2511–2521. DOI: 10.1128/AAC.02218-12.
113. Kang SJ, Park SJ, Mishig-Ochir T, et al. Antimicrobial peptides: therapeutic potentials. Expert Rev Anti Infect Ther. 2014; 12(12):1477–1486. DOI: 10.1586/14787210.2014.976613.
114. Mwangi J, Hao X, Lai R, et al. Antimicrobial peptides: new hope in the war against multidrug resistance. Zool Res. 2019; 40(6):488–505. DOI: 10.24272/j.issn.2095-8137.2019.062.
115. Pletzer D, Hancock RE. Antibiofilm Peptides: Potential as Broad-Spectrum Agents. J Bacteriol. 2016; 198(19):2572–2578. DOI: 10.1128/JB.00017-16.
116. Yasir M, Willcox MDP, Dutta D. Action of Antimicrobial Peptides against Bacterial Biofilms. Materials (Basel). 2018; 11(12):2468. DOI: 10.3390/ma11122468.
117. Shahrour H, Ferrer-Espada R, Dandache I, et al. AMPs as Anti-biofilm Agents for Human Therapy and Prophylaxis. Adv Exp Med Biol. 2019; 1117:257–279. DOI: 10.1007/978-981-13-3588-4_14.
118. Piotrowska U, Sobczak M, Oledzka E. Current state of a dual behaviour of antimicrobial peptides-Therapeutic agents and promising delivery vectors. Chem Biol Drug Des. 2017; 90(6):1079–1093. DOI: 10.1111/cbdd.13031.
119. Mahlapuu M, Håkansson J, Ringstad L, et al. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front Cell Infect Microbiol. 2016; 6:194. DOI: 10.3389/fcimb.2016.00194.
120. Borrelli A, Tornesello AL, Tornesello ML, et al. Cell Penetrating Peptides as Molecular Carriers for Anti-Cancer Agents. Molecules. 2018; 23(2):295. DOI: 10.3390/molecules23020295.
121. Yu G, Baeder DY, Regoes RR, et al. Predicting drug resistance evolution: insights from antimicrobial peptides and antibiotics. Proc Biol Sci. 2018; 285(1874):20172687. DOI: 10.1098/rspb.2017.2687.
122. Midura-Nowaczek K, Markowska A. Antimicrobial peptides and their analogs: searching for new potential therapeutics. Perspect. Medicin. Chem. 2014; 6:73–80. DOI: 10.4137/PMC.S13215.
123. Koo HB, Seo J. Antimicrobial peptides under clinical investigation. Pept. Sci. 2019; 111:e24122. DOI: 10.1002/pep2.24122.
124. Rubinchik E, Dugourd D, Algara T, et al. Antimicrobial and antifungal activities of a novel cationic antimicrobial peptide, omiganan, in experimental skin colonisation models. Int J Antimicrob Agents. 2009; 34(5):457–461. DOI: 10.1016/j.ijantimicag.2009.05.003.
125. Ming L, Huang JA. The Antibacterial Effects of Antimicrobial Peptides OP-145 against Clinically Isolated Multi-Resistant Strains. Jpn J Infect Dis. 2017; 70(6):601–603. DOI: 10.7883/yoken.JJID.2017.090.
126. Butler MS, Blaskovich MA, Cooper MA. Antibiotics in the clinical pipeline in 2013. J Antibiot (Tokyo). 2013; 66(10):571–591. DOI: 10.1038/ja.2013.86.
127. Ma JK, Drake PM, Christou P. The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet. 2003; 4(10):794–805. DOI: 10.1038/nrg1177.
128. Chernysh S, Kim SI, Bekker G, et al. Antiviral and antitumor peptides from insects. Proc Natl Acad Sci U S A. 2002; 99(20):12628–12632. DOI: 10.1073/pnas.192301899.
129. Chernysh SI. Insects defend themselves: molecules and cells of the immune response. St. Petersburg University: Journal. 2000; 20(3543):11–12. In Russian
130. [Черныш С.И. Насекомые защищаются: молекулы и клетки иммунного ответа. Санкт-Петербургский университет : Журнал. 2000; 20(3543):11–12].
131. Xiong YQ, Hady WA, Deslandes A, et al. Efficacy of NZ2114, a novel plectasin-derived cationic antimicrobial peptide antibiotic, in experimental endocarditis due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2011; 55(11):5325–5330. DOI: 10.1128/AAC.00453-11.
132. Breidenstein EB, Courvalin P, Meziane-Cherif D. Antimicrobial Activity of Plectasin NZ2114 in Combination with Cell Wall Targeting Antibiotics Against VanA-Type Enterococcus faecalis. Microb Drug Resist. 2015; 21(4):373–379. DOI: 10.1089/mdr.2014.0221.
133. Zheng X, Wang X, Teng D, et al. Mode of action of plectasin-derived peptides against gas gangrene-associated Clostridium perfringens type A. PLoS One. 2017; 12(9):e0185215. DOI: 10.1371/journal.pone.0185215.
134. Ostorhazi E, Holub MC, Rozgonyi F, et al. Broad-spectrum antimicrobial efficacy of peptide A3- APO in mouse models of multidrug-resistant wound and lung infections cannot be explained by in vitro activity against the pathogens involved. Int J Antimicrob Agents. 2011; 37(5):480–484. DOI: 10.1016/j.ijantimicag.2011.01.003.
135. Ostorhazi E, Horvath A, Szabo D, et al. Transdermally administered proline-arginine-rich host defense peptides show systemic efficacy in a lethal mouse bacteremia model. Amino Acids. 2017; 49(9):1647–1651. DOI: 10.1007/s00726-017-2457-7.
136. Ostorhazi E, Voros E, Nemes-Nikodem E, et al. Rapid systemic and local treatments with the antibacterial peptide dimer A3-APO and its monomeric metabolite eliminate bacteria and reduce inflammation in intradermal lesions infected with Propionibacterium acnes and meticillin-resistant Staphylococcus aureus. Int J Antimicrob Agents. 2013; 42(6):537–543. DOI: 10.1016/j.ijantimicag.2013.08.001.
137. Riool M, de Breij A, Drijfhout JW, et al. Antimicrobial Peptides in Biomedical Device Manufacturing. Front Chem. 2017; 5:63. DOI: 10.3389/fchem.2017.00063.
138. Yu K, Alzahrani A, Khoddami S, et al. Rapid Assembly of Infection-Resistant Coatings: Screening and Identification of Antimicrobial Peptides Works in Cooperation with an Antifouling Background. ACS Appl Mater Interfaces. 2021; 13(31):36784–36799. DOI: 10.1021/acsami.1c07515.
139. Shahid A, Aslam B, Muzammil S, et al. The prospects of antimicrobial coated medical implants. J Appl Biomater Funct Mater. 2021; 19:22808000211040304. DOI: 10.1177/22808000211040304.
140. Gordon YJ, Romanowski EG, McDermott AM. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res. 2005; 30(7):505–515. DOI: 10.1080/02713680590968637.
141. Dijksteel GS, Ulrich MMW, Middelkoop E, et al. Review: Lessons Learned From Clinical Trials Using Antimicrobial Peptides (AMPs). Front Microbiol. 2021; 12:616979. DOI: 10.3389/fmicb.2021.616979.
142. Cassone M, Otvos L Jr. Synergy among antibacterial peptides and between peptides and small-molecule antibiotics. Expert Rev Anti Infect Ther. 2010; 8(6):703–716. DOI: 10.1586/eri.10.38.
143. Ruden S, Rieder A, Chis Ster I, et al. Synergy Pattern of Short Cationic Antimicrobial Peptides Against Multidrug-Resistant Pseudomonas aeruginosa. Front Microbiol. 2019; 10:2740. DOI: 10.3389/fmicb.2019.02740.
144. Duong L., Gross S.P., Siryaporn A. Developing Antimicrobial Synergy With AMPs. Front. Med. Technol. 2021; 3:9. DOI: 10.3389/fmedt.2021.640981.
145. Pollini S, Brunetti J, Sennati S, et al. Synergistic activity profile of an antimicrobial peptide against multidrug- resistant and extensively drug-resistant strains of Gram-negative bacterial pathogens. J Pept Sci. 2017; 23(4):329–333. DOI: 10.1002/psc.2978.
146. Zharkova MS, Orlov DS, Golubeva OY, et al. Application of Antimicrobial Peptides of the Innate Immune System in Combination With Conventional Antibiotics- A Novel Way to Combat Antibiotic Resistance? Front Cell Infect Microbiol. 2019; 9:128. DOI: 10.3389/fcimb.2019.00128.
147. Kopeikin PM, Zharkova MS, Kolobov AA, et al. Caprine Bactenecins as Promising Tools for Developing New Antimicrobial and Antitumor Drugs. Front Cell Infect Microbiol. 2020; 10:552905. DOI: 10.3389/fcimb.2020.552905.
Рецензия
Для цитирования:
Шамова О.В., Жаркова М.С., Чернов А.Н., Владимирова Е.В., Сухарева М.С., Комлев А.С., Коченда О.Л., Орлов Д.С. Антимикробные пептиды врожденного иммунитета как прототипы новых средств борьбы с антибиотикорезистентными бактериями. Российский журнал персонализированной медицины. 2021;1(1):146-172.
For citation:
Shamova O.V., Zharkova M.S., Chernov A.N., Vladimirova E.V., Sukhareva M.S., Komlev A.S., Kochenda O.L., Orlov D.S. Antimicrobial peptides of innate immunity as prototypes of new agents to fight antibiotic-resistant bacteria. Russian Journal for Personalized Medicine. 2021;1(1):146-172.