Preview

Russian Journal for Personalized Medicine

Advanced search

Antimicrobial peptides of innate immunity as prototypes of new agents to fight antibiotic-resistant bacteria

Abstract

The review represents the analysis of the literature data on antimicrobial peptides (AMPs) of the innate immune system as promising prototypes of new antibiotic agents for overcoming the antibiotic resistance of microorganisms. Structural and functional properties of these peptides are highlighted, information on the mechanisms of antimicrobial action and, briefly, on their effects on the cells of higher eukaryotes is provided. The advantages of AMPs in comparison with conventional antibiotics and the problems of practical application of AMPs are discussed. Examples of drugs developed based on AMPs that are at the stage of clinical trials are given, the necessity of creating new peptide drugs for medical application in the treatment of infectious diseases caused by antibiotic-resistant microorganisms is substantiated.

About the Authors

O. V. Shamova
World-Class Research Center for Personalized Medicine; Institute of Experimental Medicine
Russian Federation

Shamova Olga V., PhD, Corr. Member RAS – Deputy Director, Head of the Department of General Pathology and Pathophysiology; Head of the laboratory of Alternative Antimicrobial Biopreparations

Academician Pavlov str. 12, Saint Petersburg, Russia, 197376



M. S. Zharkova
World-Class Research Center for Personalized Medicine; Institute of Experimental Medicine
Russian Federation

Zharkova Maria S., PhD, Senior Researcher, Laboratory of Alternative Antimicrobial Biopreparations; Senior Researcher, Department of General Pathology and Pathophysiology

Saint Petersburg



A. N. Chernov
World-Class Research Center for Personalized Medicine; Institute of Experimental Medicine
Russian Federation

Chernov Alexander N., Researcher, Department of Microbial Therapy; Researcher, Department of General Pathology and Pathophysiology

Saint Petersburg



E. V. Vladimirova
World-Class Research Center for Personalized Medicine
Russian Federation

Vladimirova Elizaveta V., Junior Researcher, Laboratory of Alternative Antimicrobial Biopreparations

Saint Petersburg



M. S. Sukhareva
World-Class Research Center for Personalized Medicine
Russian Federation

Sukhareva Maria S., Junior Researcher, Laboratory of Alternative Antimicrobial Biopreparations

Saint Petersburg



A. S. Komlev
World-Class Research Center for Personalized Medicine
Russian Federation

Komlev Aleksey S., Junior Researcher, Laboratory of Alternative Antimicrobial Biopreparations

Saint Petersburg



O. L. Kochenda
World-Class Research Center for Personalized Medicine; Institute of Experimental Medicine; Institute of Experimental Medicine
Russian Federation

Kochenda Olga L., Technician, Department of General Pathology and Pathophysiology; Research Laboratory Assistant at the Research Laboratory of Alternative Antimicrobial Biologicals

Saint Petersburg



D. S. Orlov
Institute of Experimental Medicine
Russian Federation

Orlov Dmitriy S., MD, PhD, Associate Professor, Head of the Laboratory of Immunepathophysiology, Department of General Pathology and Pathophysiology

Saint Petersburg



References

1. World Health Organization. No time to wait: Securing the future from drug-resistant infections — Report to the Secretary-General of the United Nations. 2019. https://www.who.int/antimicrobial-resistance/interagency-coordination-group/IACG_final_report_EN.pdf (4 October 2021).

2. World Health Organization. Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis. 2017. https://www.who.int/publications/i/item/WHO-EMP-IAU-2017.12 (4 October 2021).

3. Jamal M, Ahmad W, Andleeb S, et al. Bacterial biofilm and associated infections. J Chin Med Assoc. 2018; 81(1):7–11. DOI: 10.1016/j.jcma.2017.07.012.

4. Vestby LK, Grønseth T, Simm R, et al. Bacterial Biofilm and its Role in the Pathogenesis of Disease. Antibiotics (Basel). 2020; 9(2):59. DOI: 10.3390/antibiotics9020059.

5. Bjarnsholt T. The role of bacterial biofilms in chronic infections. APMIS Suppl. 2013; (136):1–51. DOI: 10.1111/apm.12099.

6. Lai Y, Gallo RL. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 2009; 30(3):131–141. DOI: 10.1016/j.it.2008.12.003.

7. Riera Romo M, Pérez-Martínez D, Castillo Ferrer C. Innate immunity in vertebrates: an overview. Immunology. 2016; 148(2):125–139. DOI: 10.1111/imm.12597.

8. Kokryakov VN. Essays on innate immunity. Saint Petersburg: Nauka, 2006. 261 p. In Russian

9. Li Y, Xiang Q, Zhang Q, et al. Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides. 2012; 37(2):207–215. DOI: 10.1016/j.peptides.2012.07.001.

10. Pasupuleti M, Schmidtchen A, Malmsten M. Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol. 2012; 32(2):143–171. DOI: 10.3109/07388551.2011.594423.

11. Zasloff M. Antimicrobial peptides, innate immunity, and the normally sterile urinary tract. J Am Soc Nephrol. 2007; 18(11):2810–2816. DOI: 10.1681/ASN.2007050611.

12. Nijnik A, Hancock R. Host defence peptides: antimicrobial and immunomodulatory activity and potential applications for tackling antibiotic-resistant infections. Emerg Health Threats J. 2009; 2:e1. DOI: 10.3134/ehtj.09.001.

13. Wiesner J, Vilcinskas A. Antimicrobial peptides: the ancient arm of the human immune system. Virulence. 2010; 1(5):440–464. DOI: 10.4161/viru.1.5.12983.

14. Lehrer RI, Lu W. α-Defensins in human innate immunity. Immunol Rev. 2012; 245(1):84–112. DOI: 10.1111/j.1600-065X.2011.01082.x.

15. Wang G. Antimicrobial peptides: Discovery, design, and novel therapeutic strategies. Wallingford: CABI Publishing, 2010. 230 p.

16. Mookherjee N, Anderson MA, Haagsman HP, et al. Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov. 2020; 19(5):311–332. DOI: 10.1038/s41573-019-0058-8.

17. Pachón-Ibáñez ME, Smani Y, Pachón J, et al. Perspectives for clinical use of engineered human host defense antimicrobial peptides. FEMS Microbiol Rev. 2017; 41(3):323–342. DOI: 10.1093/femsre/fux012.

18. Huan Y, Kong Q, Mou H, et al. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front Microbiol. 2020; 11:582779. DOI: 10.3389/fmicb.2020.582779.

19. Nguyen LT, Haney EF, Vogel HJ. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 2011; 29(9):464–472. DOI: 10.1016/j.tibtech.2011.05.001.

20. Kumar P, Kizhakkedathu JN, Straus SK. Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo. Biomolecules. 2018; 8(1):4. DOI: 10.3390/biom8010004.

21. Harris F, Dennison SR, Phoenix DA. Anionic antimicrobial peptides from eukaryotic organisms. Curr Protein Pept Sci. 2009; 10(6):585–606. DOI: 10.2174/138920309789630589.

22. Phoenix DA, Dennison SR, Harris F. Antimicrobial Peptides. Singapore: Wiley-VCH, 2013. 231 p.

23. Lai R, Liu H, Hui Lee W, et al. An anionic antimicrobial peptide from toad Bombina maxima. Biochem Biophys Res Commun. 2002; 295(4):796–799. DOI: 10.1016/s0006-291x(02)00762-3.

24. Dorin JR, McHugh BJ, Cox SL, et al. Chapter 30—Mammalian Antimicrobial Peptides; Defensins and Cathelicidins. In: Tang Y-W, Sussman M, Liu D, et al. eds. Molecular Medical Microbiology. 2nd ed. Cambridge, MA, USA: Academic Press, 2015:539–565. DOI: 10.1016/B978-0-12-397169-2.00030-5.

25. Zeya HI, Spitznagel JK. Antibacterial and enzymatic basic protein from leukocyte lysosomes: separation and identification. Science. 1963; 142(3595):1085–1087. DOI: 10.1126/science.142.3595.1085.

26. Ashmarin IP, Kokryakov VN, Lyzlova SN, et al. Interaction of cationic proteins of granules and myeloperoxidase of leukocytes. Problems of medicinal chemistry (Biomedical chemistry since 2003). 1977; 3:534–537. In Russian

27. Kokryakov VN, Ashmarin IP, Pigarevsky VE. On the nature of some fractions of lysosomal cationic proteins of leukocytes. Biochemistry. 1973; 38(6):1276–

28. In Russian

29. Masing YuA. Neutrophilic granulocytes and the body’s defense system. Archive of pathology. 1991; 9:70–73. In Russian

30. Pigarevsky VE, Ashmarin IP, Tolybekov AS, et al. On the in vitro effect of leukocyte and thymic giton and their fractions on the activity of the causative agent of meningopneumonia. Journal of Microbiology, Epidemiology and Immunobiology. 1975; 10:76–78. In Russian

31. Pigarevsky VE, Kokryakov VN, Taros LYu, et al. Antiviral properties of defensins in experimental herpes infection. In: Pathomorphology of tumors and background diseases. Leningrad, 1989:122–

32. In Russian

33. Ganz T, Selsted ME, Szklarek D, et al. Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest. 1985; 76(4):1427–1435. DOI: 10.1172/JCI112120.

34. Selsted ME, Brown DM, DeLange RJ, et al. Primary structures of six antimicrobial peptides of rabbit peritoneal neutrophils. J Biol Chem. 1985; 260(8):4579–4584.

35. Selsted ME, Harwig SS, Ganz T, et al. Primary structures of three human neutrophil defensins. J Clin Invest. 1985; 76(4):1436–1439. DOI: 10.1172/JCI112121.

36. Selsted ME, Harwig SS. Purification, primary structure, and antimicrobial activities of a guinea pig neutrophil defensin. Infect Immun. 1987; 55(9):2281–2286. DOI: 10.1128/iai.55.9.2281-2286.1987.

37. Eisenhauer PB, Harwig SS, Szklarek D, et al. Purification and antimicrobial properties of three defensins from rat neutrophils. Infect Immun. 1989; 57(7):2021–2027. DOI: 10.1128/iai.57.7.2021-2027.1989.

38. Agerberth B, Charo J, Werr J, et al. The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations. Blood. 2000; 96(9):3086–3093.

39. Selsted ME, Ouellette AJ. Mammalian defensins in the antimicrobial immune response. Nat Immunol. 2005; 6(6):551–557. DOI: 10.1038/ni1206.

40. Jones DE, Bevins CL. Paneth cells of the human small intestine express an antimicrobial peptide gene. J Biol Chem. 1992; 267(32):23216–23225.

41. Valore EV, Park CH, Quayle AJ, et al. Human beta-defensin-1: an antimicrobial peptide of urogenital tissues. J Clin Invest. 1998; 101(8):1633–1642. DOI: 10.1172/JCI1861.

42. Nakayama K, Okamura N, Arai H, et al. Expression of human beta-defensin-1 in the choroid plexus. Ann Neurol. 1999; 45(5):685. DOI: 10.1002/1531-8249(199905)45:5<685::aid-ana25>3.0.co;2-6.

43. McCray PB Jr, Bentley L. Human airway epithelia express a beta-defensin. Am J Respir Cell Mol Biol. 1997; 16(3):343–349. DOI: 10.1165/ajrcmb.16.3.9070620.

44. Harder J, Bartels J, Christophers E, et al. Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. J Biol Chem. 2001; 276(8):5707–5713. DOI: 10.1074/jbc.M008557200.

45. Ghosh SK, Gerken TA, Schneider KM, et al. Quantification of human beta-defensin-2 and -3 in body fluids: application for studies of innate immunity. Clin Chem. 2007; 53(4):757–765. DOI: 10.1373/clinchem.2006.081430.

46. Shestakova T, Zhuravel E, Bolgova L, et al. Expression of human beta-defensins-1, 2 and 4 mRNA in human lung tumor tissue: a pilot study. Exp Oncol. 2008; 30(2):153–156.

47. Otte JM, Neumann HM, Brand S, et al. Expression of beta-defensin 4 is increased in human gastritis. Eur J Clin Invest. 2009; 39(2):126–138. DOI: 10.1111/j.1365-2362.2008.02071.x.

48. Pazgier M, Hoover DM, Yang D, et al. Human beta-defensins. Cell Mol Life Sci. 2006; 63(11):1294–1313. DOI: 10.1007/s00018-005-5540-2.

49. Tang YQ, Yuan J, Osapay G, et al. A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins. Science. 1999; 286(5439):498–502. DOI: 10.1126/science.286.5439.498.

50. Leonova L, Kokryakov VN, Aleshina G, et al. Circular minidefensins and posttranslational generation of molecular diversity. J Leukoc Biol. 2001; 70(3):461–464.

51. Stegemann C, Tsvetkova EV, Aleshina GM, et al. De novo sequencing of two new cyclic theta-defensins from baboon (Papio hamadryas) leukocytes by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom. 2010; 24(5):599–604. DOI: 10.1002/rcm.4424.

52. Zanetti M, Gennaro R, Romeo D. Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett. 1995; 374(1):1–5. DOI: 10.1016/0014-5793(95)01050-o.

53. Kopitar M, Ritonja A, Popovic T, et al. A new type of low-molecular mass cysteine proteinase inhibitor from pig leukocytes. Biol Chem Hoppe Seyler. 1989; 370(10):1145–1151. DOI: 10.1515/bchm3.1989.370.2.1145.

54. Zanetti M. The role of cathelicidins in the innate host defenses of mammals. Curr Issues Mol Biol. 2005; 7(2):179–196.

55. Kościuczuk EM, Lisowski P, Jarczak J, et al. Cathelicidins: family of antimicrobial peptides. A review. Mol Biol Rep. 2012; 39(12):10957–10970. DOI: 10.1007/s11033-012-1997-x.

56. Wang Y, Wang M, Shan A, et al. Avian host defense cathelicidins: structure, expression, biological functions, and potential therapeutic applications. Poult Sci. 2020; 99(12):6434–6445. DOI: 10.1016/j.psj.2020.09.030.

57. Graf M, Wilson DN. Intracellular Antimicrobial Peptides Targeting the Protein Synthesis Machinery. Adv Exp Med Biol. 2019; 1117:73–89. DOI: 10.1007/978-981-13-3588-4_6.

58. Mercer DK, O’Neil DA. Innate Inspiration: Antifungal Peptides and Other Immunotherapeutics From the Host Immune Response. Front Immunol. 2020; 11:2177. DOI: 10.3389/fimmu.2020.02177.

59. Mechkarska M, Ahmed E, Coquet L, et al. Antimicrobial peptides with therapeutic potential from skin secretions of the Marsabit clawed frog Xenopus borealis (Pipidae). Comp Biochem Physiol C Toxicol Pharmacol. 2010; 152(4):467–472. DOI: 10.1016/j.cbpc.2010.07.007.

60. Wang J, Wong ES, Whitley JC, et al. Ancient antimicrobial peptides kill antibiotic-resistant pathogens: Australian mammals provide new options. PLoS One. 2011; 6(8):e24030. DOI: 10.1371/journal.pone.0024030.

61. Roque-Borda CA, da Silva PB, Rodrigues MC, et al. Challenge in the Discovery of New Drugs: Antimicrobial Peptides against WHO-List of Critical and High-Priority Bacteria. Pharmaceutics. 2021; 13(6):773. DOI: 10.3390/pharmaceutics13060773.

62. León-Buitimea A, Garza-Cárdenas CR, Garza- Cervantes JA, et al. The Demand for New Antibiotics: Antimicrobial Peptides, Nanoparticles, and Combinatorial Therapies as Future Strategies in Antibacterial Agent Design. Front Microbiol. 2020; 11:1669. DOI: 10.3389/fmicb.2020.01669.

63. Lohner K. New strategies for novel antibiotics: peptides targeting bacterial cell membranes. Gen Physiol Biophys. 2009; 28(2):105–116. DOI: 10.4149/gpb_2009_02_105.

64. Hollmann A, Martinez M, Maturana P, et al. Antimicrobial Peptides: Interaction With Model and Biological Membranes and Synergism With Chemical Antibiotics. Front Chem. 2018; 6:204. DOI: 10.3389/fchem.2018.00204.

65. Tornesello AL, Borrelli A, Buonaguro L, et al. Antimicrobial Peptides as Anticancer Agents: Functional Properties and Biological Activities. Molecules. 2020; 25(12):2850. DOI: 10.3390/molecules25122850.

66. Li J, Koh JJ, Liu S, et al. Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design. Front Neurosci. 2017; 11:73. doi: 10.3389/fnins.2017.00073.

67. Tuerkova A, Kabelka I, Králová T, et al. Effect of helical kink in antimicrobial peptides on membrane pore formation. Elife. 2020; 9:e47946. DOI: 10.7554/eLife.47946.

68. Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol. 2005; 3(3):238–250. DOI: 10.1038/nrmicro1098.

69. Pouny Y, Rapaport D, Mor A, et al. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry. 1992; 31(49):12416–12423. DOI: 10.1021/bi00164a017.

70. Miteva M, Andersson M, Karshikoff A, et al. Molecular electroporation: a unifying concept for the description of membrane pore formation by antibacterial peptides, exemplified with NK-lysin. FEBS Lett. 1999; 462(1–2):155–158. DOI: 10.1016/s0014-5793(99)01520-3.

71. Le CF, Fang CM, Sekaran SD. Intracellular Targeting Mechanisms by Antimicrobial Peptides. Antimicrob Agents Chemother. 2017; 61(4):e02340-16. DOI: 10.1128/AAC.02340-16.

72. Park CB, Kim HS, Kim SC. Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun. 1998; 244(1):253–257. DOI: 10.1006/bbrc.1998.8159.

73. Patrzykat A, Friedrich CL, Zhang L, et al. Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob Agents Chemother. 2002; 46(3):605–614. DOI: 10.1128/AAC.46.3.605-614.2002.

74. Lehrer RI, Barton A, Daher KA, et al. Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J Clin Invest. 1989; 84(2):553–561. DOI: 10.1172/JCI114198 .

75. Subbalakshmi C, Sitaram N. Mechanism of antimicrobial action of indolicidin. FEMS Microbiol Lett. 1998; 160(1):91–96. DOI: 10.1111/j.1574-6968.1998.tb12896.x.

76. Kragol G, Lovas S, Varadi G, et al. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry. 2001; 40(10):3016–3026. DOI: 10.1021/bi002656a.

77. Scocchi M, Lüthy C, Decarli P, et al. The Proline- rich Antibacterial Peptide Bac7 Binds to and Inhibits in vitro the Molecular Chaperone DnaK. Int J Pept Res Therapeut. 2009; 15(2):147–155. DOI: 10.1007/s10989-009-9182-3.

78. Zahn M, Berthold N, Kieslich B, et al. Structural studies on the forward and reverse binding modes of peptides to the chaperone DnaK. J Mol Biol. 2013; 425(14):2463–2479. DOI: 10.1016/j.jmb.2013.03.041.

79. Zahn M, Kieslich B, Berthold N, et al. Structural identification of DnaK binding sites within bovine and sheep bactenecin Bac7. Protein Pept Lett. 2014; 21:407–412. DOI: 10.2174/09298665113206660111.

80. Krizsan A, Prahl C, Goldbach T, et al. Short proline-rich antimicrobial peptides inhibit either the bacterial 70S ribosome or the assembly of its large 50S subunit. Chembiochem. 2015; 16(16):2304–2308. DOI: 10.1002/cbic.201500375.

81. Krizsan A, Volke D, Weinert S, et al. Insect-derived proline-rich antimicrobial peptides kill bacteria by inhibiting bacterial protein translation at the 70S ribosome. Angew Chem Int Ed Engl. 2014; 53:12236–12239. DOI: 10.1002/anie.201407145.

82. Roy RN, Lomakin IB, Gagnon MG, et al. The mechanism of inhibition of protein synthesis by the proline-rich peptide oncocin. Nat Struct Mol Biol. 2015; 22:466–469. DOI: 10.1038/nsmb.3031.

83. Mardirossian M, Grzela R, Giglione C, et al. The host antimicrobial peptide Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis. Chem Biol. 2014; 21:1639–1647. DOI: 10.1016/j.chembiol.2014.10.009.

84. Mardirossian M, Barrière Q, Timchenko T, et al. Fragments of the Nonlytic Proline-Rich Antimicrobial Peptide Bac5 Kill Escherichia coli Cells by Inhibiting Protein Synthesis. Antimicrob Agents Chemother. 2018; 62(8):e00534-18. DOI: 10.1128/AAC.00534-18.

85. Brötz H, Bierbaum G, Reynolds PE, et al. The lantibiotic mersacidin inhibits peptidoglycan biosynthesis at the level of transglycosylation. Eur J Biochem. 1997; 246(1):193-199. DOI: 10.1111/j.1432-1033.1997.t01-1-00193.x.

86. Breukink E, de Kruijff B. Lipid II as a target for antibiotics. Nat Rev Drug Discov. 2006; 5(4):321–332. DOI: 10.1038/nrd2004.

87. Liu SP, Zhou L, Lakshminarayanan R, et al. Multivalent Antimicrobial Peptides as Therapeutics: Design Principles and Structural Diversities. Int J Pept Res Ther. 2010; 16(3):199–213. DOI: 10.1007/s10989-010-9230-z.

88. Guilhelmelli F, Vilela N, Albuquerque P, et al. Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front Microbiol. 2013; 4:353. DOI: 10.3389/fmicb.2013.00353.

89. Boehr DD, Draker KA, Koteva K, et al. Broad-spectrum peptide inhibitors of aminoglycoside antibiotic resistance enzymes. Chem Biol. 2003; 10(2):189–196. DOI: 10.1016/s1074-5521(03)00026-7.

90. Wimley WC, Hristova K. Antimicrobial peptides: successes, challenges and unanswered questions. J Membr Biol. 2011; 239(1–2):27–34. DOI: 10.1007/s00232-011-9343-0.

91. Lichtenstein AK, Ganz T, Nguyen TM, et al. Mechanism of target cytolysis by peptide defensins. Target cell metabolic activities, possibly involving endocytosis, are crucial for expression of cytotoxicity. J Immunol. 1988; 140(8):2686–2694.

92. Lichtenstein A. Mechanism of mammalian cell lysis mediated by peptide defensins. Evidence for an initial alteration of the plasma membrane. J Clin Invest. 1991; 88(1):93–100. DOI: 10.1172/JCI115310.

93. McKeown ST, Lundy FT, Nelson J, et al. The cytotoxic effects of human neutrophil peptide-1 (HNP1) and lactoferrin on oral squamous cell carcinoma (OSCC) in vitro. Oral Oncol. 2006; 42(7):685–690. DOI: 10.1016/j.oraloncology.2005.11.005.

94. Huang HJ, Ross CR, Blecha F. Chemoattractant properties of PR-39, a neutrophil antibacterial peptide. J Leukoc Biol. 1997; 61(5):624–629. DOI: 10.1002/jlb.61.5.624.

95. Biragyn A, Surenhu M, Yang D, et al. Mediators of innate immunity that target immature, but not mature, dendritic cells induce antitumor immunity when genetically fused with nonimmunogenic tumor antigens. J Immunol. 2001; 167(11):6644–6653. DOI: 10.4049/jimmunol.167.11.6644.

96. Dürr M, Peschel A. Chemokines meet defensins: the merging concepts of chemoattractants and antimicrobial peptides in host defense. Infect Immun. 2002; 70(12):6515–6517. DOI: 10.1128/IAI.70.12.6515-6517.2002.

97. Li J, Post M, Volk R, et al. PR39, a peptide regulator of angiogenesis. Nat Med. 2000; 6(1):49–55. DOI: 10.1038/71527.

98. Kanazawa K, Okumura K, Ogawa H, et al. An antimicrobial peptide with angiogenic properties, AG- 30/5C, activates human mast cells through the MAPK and NF-κB pathways. Immunol Res. 2016; 64(2):594–603. DOI: 10.1007/s12026-015-8759-5.

99. Koczulla R, Bals R. Cathelicidin antimicrobial peptides modulate angiogenesis. In: E. Deindl and C. Kupatt eds. Therapeutic Neovascularization-Quo Vadis? Netherlands: Springer, 2007:191–196. DOI: 10.1007/1-4020-5955-8_10.

100. Takahashi M, Umehara Y, Yue H, et al. The Antimicrobial Peptide Human β-Defensin-3 Accelerates Wound Healing by Promoting Angiogenesis, Cell Migration, and Proliferation Through the FGFR/JAK2/STAT3 Signaling Pathway. Front Immunol. 2021; 12:712781. DOI: 10.3389/fimmu.2021.712781.

101. Territo MC, Ganz T, Selsted ME, et al. Monocyte- chemotactic activity of defensins from human neutrophils. J Clin Invest. 1989; 84(6):2017–2020. DOI: 10.1172/JCI114394.

102. Niyonsaba F, Someya A, Hirata M, et al. Evaluation of the effects of peptide antibiotics human beta-defensins-1/-2 and LL-37 on histamine release and prostaglandin D(2) production from mast cells. Eur J Immunol. 2001; 31(4):1066–1075. DOI: 10.1002/1521-4141(200104)31:4<1066::aid-immu1066>3.0.co;2-#.

103. Yoshioka M, Fukuishi N, Kubo Y, et al. Human cathelicidin CAP18/LL-37 changes mast cell function toward innate immunity. Biol Pharm Bull. 2008; 31(2):212–216. DOI: 10.1248/bpb.31.212.

104. Gupta K, Kotian A, Subramanian H, et al. Activation of human mast cells by retrocyclin and protegrin highlight their immunomodulatory and antimicrobial properties. Oncotarget. 2015; 6(30):28573–28587. DOI: 10.18632/oncotarget.5611.

105. Davidson DJ, Currie AJ, Reid GS, et al. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J Immunol. 2004; 172(2):1146–1156. DOI: 10.4049/jimmunol.172.2.1146.

106. Fu L, Jin P, Hu Y, et al. KR12a6 promotes the osteogenic differentiation of human bone marrow mesenchymal stem cells via BMP/SMAD signaling. Mol Med Rep. 2020; 21(1):61–68. DOI: 10.3892/mmr.2019.10843.

107. van der Does AM, Joosten SA, Vroomans E, et al. The antimicrobial peptide hLF1-11 drives monocyte- dendritic cell differentiation toward dendritic cells that promote antifungal responses and enhance Th17 polarization. J Innate Immun. 2012; 4(3):284–292. DOI: 10.1159/000332941.

108. Zhu QZ, Hu J, Mulay S, et al. Isolation and structure of corticostatin peptides from rabbit fetal and adult lung. Proc Natl Acad Sci U S A. 1988; 85(2):592–596. DOI: 10.1073/pnas.85.2.592.

109. Zhu Q, Solomon S. Isolation and mode of action of rabbit corticostatic (antiadrenocorticotropin) peptides. Endocrinology. 1992; 130(3):1413–1423. DOI: 10.1210/endo.130.3.1311240.

110. Zhu QZ, Singh AV, Bateman A, et al. The corticostatic (anti-ACTH) and cytotoxic activity of peptides isolated from fetal, adult and tumor-bearing lung. J Steroid Biochem. 1987; 27(4–6):1017–1022. DOI: 10.1016/0022-4731(87)90184-1.

111. Cho JH, Kim SC. Non-membrane targets of antimicrobial peptides: novel therapeutic opportunities? In: Wang G, ed. Antimicrobial peptides: discovery, design and novel therapeutic strategies. Wallingford: CABI Publishing, 2010: 128–140.

112. Mangoni ML. Host-defense peptides: from biology to therapeutic strategies. Cell Mol Life Sci. 2011; 68(13):2157–2159. DOI: 10.1007/s00018-011-0709-3.

113. Alba A, López-Abarrategui C, Otero-González AJ. Host defense peptides: an alternative as antiinfective and immunomodulatory therapeutics. Biopolymers. 2012; 98(4):251–267. DOI: 10.1002/bip.22076.

114. Deslouches B, Steckbeck JD, Craigo JK, et al. Rational design of engineered cationic antimicrobial peptides consisting exclusively of arginine and tryptophan, and their activity against multidrug-resistant pathogens. Antimicrob Agents Chemother. 2013; 57(6):2511–2521. DOI: 10.1128/AAC.02218-12.

115. Kang SJ, Park SJ, Mishig-Ochir T, et al. Antimicrobial peptides: therapeutic potentials. Expert Rev Anti Infect Ther. 2014; 12(12):1477–1486. DOI: 10.1586/14787210.2014.976613.

116. Mwangi J, Hao X, Lai R, et al. Antimicrobial peptides: new hope in the war against multidrug resistance. Zool Res. 2019; 40(6):488–505. DOI: 10.24272/j.issn.2095-8137.2019.062.

117. Pletzer D, Hancock RE. Antibiofilm Peptides: Potential as Broad-Spectrum Agents. J Bacteriol. 2016; 198(19):2572–2578. DOI: 10.1128/JB.00017-16.

118. Yasir M, Willcox MDP, Dutta D. Action of Antimicrobial Peptides against Bacterial Biofilms. Materials (Basel). 2018; 11(12):2468. DOI: 10.3390/ma11122468.

119. Shahrour H, Ferrer-Espada R, Dandache I, et al. AMPs as Anti-biofilm Agents for Human Therapy and Prophylaxis. Adv Exp Med Biol. 2019; 1117:257–279. DOI: 10.1007/978-981-13-3588-4_14.

120. Piotrowska U, Sobczak M, Oledzka E. Current state of a dual behaviour of antimicrobial peptides-Therapeutic agents and promising delivery vectors. Chem Biol Drug Des. 2017; 90(6):1079–1093. DOI: 10.1111/cbdd.13031.

121. Mahlapuu M, Håkansson J, Ringstad L, et al. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front Cell Infect Microbiol. 2016; 6:194. DOI: 10.3389/fcimb.2016.00194.

122. Borrelli A, Tornesello AL, Tornesello ML, et al. Cell Penetrating Peptides as Molecular Carriers for Anti-Cancer Agents. Molecules. 2018; 23(2):295. DOI: 10.3390/molecules23020295.

123. Yu G, Baeder DY, Regoes RR, et al. Predicting drug resistance evolution: insights from antimicrobial peptides and antibiotics. Proc Biol Sci. 2018; 285(1874):20172687. DOI: 10.1098/rspb.2017.2687.

124. Midura-Nowaczek K, Markowska A. Antimicrobial peptides and their analogs: searching for new potential therapeutics. Perspect. Medicin. Chem. 2014; 6:73–80. DOI: 10.4137/PMC.S13215.

125. Koo HB, Seo J. Antimicrobial peptides under clinical investigation. Pept. Sci. 2019; 111:e24122. DOI: 10.1002/pep2.24122.

126. Rubinchik E, Dugourd D, Algara T, et al. Antimicrobial and antifungal activities of a novel cationic antimicrobial peptide, omiganan, in experimental skin colonisation models. Int J Antimicrob Agents. 2009; 34(5):457–461. DOI: 10.1016/j.ijantimicag.2009.05.003.

127. Ming L, Huang JA. The Antibacterial Effects of Antimicrobial Peptides OP-145 against Clinically Isolated Multi-Resistant Strains. Jpn J Infect Dis. 2017; 70(6):601–603. DOI: 10.7883/yoken.JJID.2017.090.

128. Butler MS, Blaskovich MA, Cooper MA. Antibiotics in the clinical pipeline in 2013. J Antibiot (Tokyo). 2013; 66(10):571–591. DOI: 10.1038/ja.2013.86.

129. Ma JK, Drake PM, Christou P. The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet. 2003; 4(10):794–805. DOI: 10.1038/nrg1177.

130. Chernysh S, Kim SI, Bekker G, et al. Antiviral and antitumor peptides from insects. Proc Natl Acad Sci U S A. 2002; 99(20):12628–12632. DOI: 10.1073/pnas.192301899.

131. Chernysh SI. Insects defend themselves: molecules and cells of the immune response. St. Petersburg University: Journal. 2000; 20(3543):11–12. In Russian

132. Xiong YQ, Hady WA, Deslandes A, et al. Efficacy of NZ2114, a novel plectasin-derived cationic antimicrobial peptide antibiotic, in experimental endocarditis due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2011; 55(11):5325–5330. DOI: 10.1128/AAC.00453-11.

133. Breidenstein EB, Courvalin P, Meziane-Cherif D. Antimicrobial Activity of Plectasin NZ2114 in Combination with Cell Wall Targeting Antibiotics Against VanA-Type Enterococcus faecalis. Microb Drug Resist. 2015; 21(4):373–379. DOI: 10.1089/mdr.2014.0221.

134. Zheng X, Wang X, Teng D, et al. Mode of action of plectasin-derived peptides against gas gangrene-associated Clostridium perfringens type A. PLoS One. 2017; 12(9):e0185215. DOI: 10.1371/journal.pone.0185215.

135. Ostorhazi E, Holub MC, Rozgonyi F, et al. Broad-spectrum antimicrobial efficacy of peptide A3- APO in mouse models of multidrug-resistant wound and lung infections cannot be explained by in vitro activity against the pathogens involved. Int J Antimicrob Agents. 2011; 37(5):480–484. DOI: 10.1016/j.ijantimicag.2011.01.003.

136. Ostorhazi E, Horvath A, Szabo D, et al. Transdermally administered proline-arginine-rich host defense peptides show systemic efficacy in a lethal mouse bacteremia model. Amino Acids. 2017; 49(9):1647–1651. DOI: 10.1007/s00726-017-2457-7.

137. Ostorhazi E, Voros E, Nemes-Nikodem E, et al. Rapid systemic and local treatments with the antibacterial peptide dimer A3-APO and its monomeric metabolite eliminate bacteria and reduce inflammation in intradermal lesions infected with Propionibacterium acnes and meticillin-resistant Staphylococcus aureus. Int J Antimicrob Agents. 2013; 42(6):537–543. DOI: 10.1016/j.ijantimicag.2013.08.001.

138. Riool M, de Breij A, Drijfhout JW, et al. Antimicrobial Peptides in Biomedical Device Manufacturing. Front Chem. 2017; 5:63. DOI: 10.3389/fchem.2017.00063.

139. Yu K, Alzahrani A, Khoddami S, et al. Rapid Assembly of Infection-Resistant Coatings: Screening and Identification of Antimicrobial Peptides Works in Cooperation with an Antifouling Background. ACS Appl Mater Interfaces. 2021; 13(31):36784–36799. DOI: 10.1021/acsami.1c07515.

140. Shahid A, Aslam B, Muzammil S, et al. The prospects of antimicrobial coated medical implants. J Appl Biomater Funct Mater. 2021; 19:22808000211040304. DOI: 10.1177/22808000211040304.

141. Gordon YJ, Romanowski EG, McDermott AM. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res. 2005; 30(7):505–515. DOI: 10.1080/02713680590968637.

142. Dijksteel GS, Ulrich MMW, Middelkoop E, et al. Review: Lessons Learned From Clinical Trials Using Antimicrobial Peptides (AMPs). Front Microbiol. 2021; 12:616979. DOI: 10.3389/fmicb.2021.616979.

143. Cassone M, Otvos L Jr. Synergy among antibacterial peptides and between peptides and small-molecule antibiotics. Expert Rev Anti Infect Ther. 2010; 8(6):703–716. DOI: 10.1586/eri.10.38.

144. Ruden S, Rieder A, Chis Ster I, et al. Synergy Pattern of Short Cationic Antimicrobial Peptides Against Multidrug-Resistant Pseudomonas aeruginosa. Front Microbiol. 2019; 10:2740. DOI: 10.3389/fmicb.2019.02740.

145. Duong L., Gross S.P., Siryaporn A. Developing Antimicrobial Synergy With AMPs. Front. Med. Technol. 2021; 3:9. DOI: 10.3389/fmedt.2021.640981.

146. Pollini S, Brunetti J, Sennati S, et al. Synergistic activity profile of an antimicrobial peptide against multidrug- resistant and extensively drug-resistant strains of Gram-negative bacterial pathogens. J Pept Sci. 2017; 23(4):329–333. DOI: 10.1002/psc.2978.

147. Zharkova MS, Orlov DS, Golubeva OY, et al. Application of Antimicrobial Peptides of the Innate Immune System in Combination With Conventional Antibiotics- A Novel Way to Combat Antibiotic Resistance? Front Cell Infect Microbiol. 2019; 9:128. DOI: 10.3389/fcimb.2019.00128.

148. Kopeikin PM, Zharkova MS, Kolobov AA, et al. Caprine Bactenecins as Promising Tools for Developing New Antimicrobial and Antitumor Drugs. Front Cell Infect Microbiol. 2020; 10:552905. DOI: 10.3389/fcimb.2020.552905.


Review

For citations:


Shamova O.V., Zharkova M.S., Chernov A.N., Vladimirova E.V., Sukhareva M.S., Komlev A.S., Kochenda O.L., Orlov D.S. Antimicrobial peptides of innate immunity as prototypes of new agents to fight antibiotic-resistant bacteria. Russian Journal for Personalized Medicine. 2021;1(1):146-172.

Views: 2242


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3806 (Print)
ISSN 2782-3814 (Online)