Artificial intelligence technology in MR neuroimaging. А radiologist’s perspective
https://doi.org/10.18705/2782-3806-2023-3-1-6-17
Abstract
Artificial Intelligence (AI) has been the subject of particular interest in the field of radiology in recent years. Experts believe that the development and implementation of AI technologies will improve diagnostic accuracy, speed up the acquisition of objective information, reduce its variability, and optimize the workflow of diagnostic departments of medical institutions. Over the years, AI has evolved from simple rule-based systems to sophisticated deep-learning algorithms capable of analysing medical images with high accuracy.
Despite some progress, the use of AI in medical imaging is still limited. There are many challenges that need to be overcome before it can be widely adopted in clinical practice. For example, training AI algorithms require large amounts of high quality annotated data, and such data is not yet available for the bulk of pathology and any of the imaging techniques. This article looks at the possibilities of AI and some of the current challenges associated with the application of AI in neuroimaging.
About the Authors
G. E. TrufanovRussian Federation
Trufanov Gennadiy E., MD, PhD, professor, chief researcher of the Radiation Diagnostics Research Department, head of Radiation Diagnostics and Medical Imaging Department
Saint Petersburg
A. Yu. Efimtsev
Russian Federation
Efimtsev Aleksandr Yu., PhD, Associate Professor of Radiation Diagnostics and Medical Imaging Department, leading researcher of Radiation Diagnostics Research Laboratory; Leading Researcher of the Research Laboratory of Radiation Imaging, Leading Researcher of the Group for Personalized Treatment of Postmastectomy Syndrome
, Akkuratova str., 2, Saint Petersburg, Russia, 197341
References
1. Гусев А.В., Морозов С.П., Кутичев В.А., Новицкий Р.Э. Нормативно-правовое регулирование программного обеспечения для здравоохранения, созданного с применением технологий искусственного интеллекта, в Российской Федерации. Медицинские технологии. Оценка и выбор. 2021;43(1):36–45. https://doi.org/10.17116/medtech20214301136
2. Карпов О.Э., Пензин О.В., Веселова О.В. Организация и регуляция взаимодействия искусственного интеллекта с врачом и пациентом. Вестник Национального медико-хирургического центра им. Н. И. Пирогова. 2020, т. 15, № 2. DOI: 10.25881/BPNMSC.2020.73.34.027.
3. Cao Z, Xu J, Song B, et al. Deep learning derived automated ASPECTS on non-contrast CT scans of acute ischemic stroke patients. Human Brain Mapping. 2022;43(10): 3023–3036. https://doi.org/10.1002/hbm.25845
4. Alzheimer’s Association. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association. 2021. https://www.alz.org/alzheimers-dementia
5. Antoniadi AM, Du Y, Guendouz Y, et al. Current Challenges and Future Opportunities for XAI in Machine Learning-Based Clinical Decision Support Systems: A Systematic Review. Appl. Sci. 2021;11:5088.
6. Arabahmadi M, Farahbakhsh R, Rezazadeh J. Deep Learning for Smart Healthcare-A Survey on Brain Tumor Detection from Medical Imaging. Sensors (Basel). 2022 Mar 2;22(5):1960. DOI: 10.3390/s22051960.
7. Arrieta AB, Díaz-Rodríguez N, Del Ser J, et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 2020; 58: 82–115.
8. Bernal J, Mazo C. Transparency of Artificial Intelligence in Healthcare: Insights from Professionals in Computing and Healthcare Worldwide. Applied Sciences. 2022; 12(20):10228. https://doi.org/10.3390/app122010228
9. Bickley SJ, Chan HF, Torgler B. Artificial intelligence in the field of economics. Scientometrics. 2022;127:2055–2084. https://doi.org/10.1007/s11192-022-04294-w
10. Cai H, Jin X. Data Privacy and Security in AI for Medical Imaging: A Review. Journal of Healthcare Engineering. 2019;1–12. https://doi.org/10.1155/2019/4084297
11. Cai W, Fan Y. Deep learning in medical imaging: general overview and future promise. Journal of Medical Systems. 2019; 43(10):427.
12. Marshall CR, Uchegbu I. Artificial intelligence for detection of Alzheimer’s disease: demonstration of real-world value is required to bridge the translational gap, The Lancet Digital Health, Volume 4, Issue 11, 2022, Pages e768–e769, ISSN 2589-7500, https://doi.org/10.1016/S2589-7500(22)00190-X.
13. Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future Healthc. J. 2019;6:94–98.
14. Elmezain M, Mahmoud A, Mosa DT, Said W. Brain Tumor Segmentation Using Deep Capsule Network and Latent-Dynamic Conditional Random Fields. Journal of Imaging. 2022; 8(7):190. https://doi.org/10.3390/jimaging8070190
15. Frizzell TO, Glashutter M, Liu CC, et al. Artificial intelligence in brain MRI analysis of Alzheimer’s disease over the past 12 years: A systematic review. Ageing Res Rev. 2022 May;77:101614. DOI: 10.1016/j.arr.2022.101614. Epub 2022 Mar 28. PMID: 35358720)
16. Garbin G, Bizzi A, Landini L, Borghi R. Deep learning in medical imaging: Overview and future promises of an exciting new technique. Insights into Imaging. 2020;11(3):139. https://doi.org/10.1186/s13244-020-00847-1
17. Gerke S, Minssen T, Cohen G. Ethical and Legal Challenges of Artificial Intelligence-Driven Health Care. In Artificial Intelligence in Healthcare, 1st ed.; Bohr, A., Memarzadeh, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 295–336.
18. Gulshan V, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316, 2402–2410 (2016).
19. Gur D, Bilgic B, van Bavel JJ. The use of artificial intelligence in neuroimaging. JAMA Neurology. 2020;77(4):427–434.
20. Gutman B, Ikram MA, Fenema PJ. Artificial intelligence in radiology: Past, present and future. European Radiology. 2019;29(7):4071–4081. https://doi.org/10.1007/s00330-019-06065-1
21. Ho PS, Young-Hak K, Young LJ, et al. Ethical challenges regarding artificial intelligence in medicine from the perspective of scientific editing and peer review. Sci. Ed. 2019;6:91–98.
22. Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning inmedical image analysis. Med Image Anal. 2017;42:60–88.8.
23. Manne R, Kantheti SC. Application of Artificial Intelligence in Healthcare: Chances and Challenges. Curr. J. Appl. Sci. Technol. 2021;40:78–89.
24. Martinho A, Kroesen M, Chorus C. A healthy debate: Exploring the views of medical doctors on the ethics of artificial intelligence. Artif. Intell. Med. 2021;121:102190.
25. Noguerol T, Paulano-Godino F, Martín-Valdivia M, et al. Strengths, Weaknesses, Opportunities, and Threats Analysis of Artificial Intelligence and Machine Learning Applications in Radiology. Journal of the American College of Radiology. 2019;16:1239–1247. 10.1016/j.jacr.2019.05.047.
26. O’Neil C. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Crown Publishing Group. 2016.
27. Ongena YP, Haan M, Yakar D, Kwee TC. Patients’ views on the implementation of artificial intelligence in radiology: development and validation of a standardized questionnaire. Eur Radiol. 2020 Feb;30(2):1033–1040. DOI: 10.1007/s00330-019-06486-0B.
28. Pesapane F, Codari M, Sardanelli F. Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur Radiol Exp. 2018;2(1):35.
29. Prastawa M, Balu N, Kakadiaris IA. Machine learning and neuroimaging. Neuroimage. 2015;123, 111– 124.
30. Sajjadian M, Lam RW, Milev R, et al. Machine learning in the prediction of depression treatment outcomes: A systematic review and meta-analysis. Psychol. Med. 2021, 1–10.
31. Schönberger D. Artificial intelligence in healthcare: A critical analysis of the legal and ethical implications. Int. J. Law Inf. Technol. 2019;27:171–203.
32. Traverso A, Wee L, Dekker A, Gillies R. Repeatability and reproducibility of radiomic features: a systematic review. Int J Radiat Oncol Biol Phys. 2018;102(4):1143–1158.
33. Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, Ugurbil K. Consortium, W.M.H. The WU-Minn human connectome project: An overview. Neuroimage 2013;80:62–79.
34. Wahid F, Alsaied T. Transparent AI in Medical Imaging: A Review. Journal of Healthcare Engineering. 2021: 1–17. https://doi.org/10.1155/2021/1906314
35. Wang X, Liu J, Wang Y, Lu L, Shen D. Deep learning in medical imaging: General overview and future promise. Frontiers in Bioengineering and Biotechnology. 2020;8, 663. https://doi.org/10.3389/fbioe.2020.00663
36. WHO. Health Ethics & Governance of Artificial Intelligence for Health; World Health Organization: Geneva, Switzerland, 2021; p. 150.
37. Wu Y, Fan Y, Wang Y, Shen D. Deep learning in medical image analysis. Annual Review of Biomedical Engineering. 2019;21:221–248.
38. Zech J. Bias in AI: A Problematic Aspect of AI in Medical Imaging. Journal of Medical Systems. 2018;42(8):300. https://doi.org/10.1007/s10916-018-0958-x
39. Zhang X, Liu J, Lu L, Shen D. Deep learningbased prognosis prediction for brain tumors using MRI. Medical Image Analysis. 2021;66, 101957. https://doi.org/10.1016/j.media.2021.101957
40. Zhang X, Ding J. Artificial intelligence in medical imaging: A review. Journal of Medical Systems. 2019;43(10):445. https://doi.org/10.1007/s10916-019-1399-0
41. Wang S, Summers RM. Machine learning and radiology. Med ImageAnal 2012;16:933–51.3.
Review
For citations:
Trufanov G.E., Efimtsev A.Yu. Artificial intelligence technology in MR neuroimaging. А radiologist’s perspective. Russian Journal for Personalized Medicine. 2023;3(1):6-17. (In Russ.) https://doi.org/10.18705/2782-3806-2023-3-1-6-17