Preview

Российский журнал персонализированной медицины

Расширенный поиск

Синтез микро- и наночастиц в микрофлюидных реакторах для биомедициского применения

Аннотация

В настоящее время наблюдается тенденция к внедрению микрофлюидных устройств во многих областях биомедицины: синтез лекарств, тераностика, биосенсоры. Такие устройства обеспечивают быстрое и достаточное перемешивание в микрофлюидных каналах, позволяют получать монодисперсные частицы, в том числе наноразмерные, проводить контроль за условиями синтеза и точно регулировать физико-химические свойства получаемых субстанций. Сенсоры на основе микрофлюидики позволяют детектировать различные патологические процессы. Настоящий обзор литературы дает представление о принципах построения микрофлюидных устройств и систем дозирования реактивов, а также о материалах для микрофлюидных чипов. Приведены примеры использования микрофлюидики в различных областях биомедицины.

Об авторах

Е. О. Лазарева
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В. А. Алмазова» Министерства здравоохранения Российской Федерации; Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В. И. Ульянова (Ленина)»
Россия

Лазарева Елизавета Олеговна, младший научный сотрудник НИЛ нанотехнологий Центра экспериментального биомоделирования Института экспериментальной медицины

ул. Аккуратова, д. 2, Санкт-Петербург, Россия, 197341



А. А. Евстрапов
Федеральное государственное бюджетное учреждение науки Институт аналитического приборостроения Российской академии наук
Россия

Евстрапов Анатолий Александрович, д.т.н., исполняющий обязанности директора

Санкт-Петербург



К. Г. Гареев
Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В. И. Ульянова (Ленина)»
Россия

Гареев Камиль Газинурович, к.т.н., доцент кафедры микро- и наноэлектроники

Санкт-Петербург



Ю. В. Чебуркин
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В. А. Алмазова» Министерства здравоохранения Российской Федерации
Россия

Чебуркин Юрий Владимирович, к.м.н., заведующий НИЛ инфекционных патогенов и биомолекулярных наноструктур Центра доклинических и трансляционных исследований

Санкт-Петербург



А. Крижанович
Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В. И. Ульянова (Ленина)»
Россия

Крижанович Александр, магистрант

Санкт-Петербург



Д. В. Королев
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В. А. Алмазова» Министерства здравоохранения Российской Федерации
Россия

Королев Дмитрий Владимирович, д.х.н., доцент, заведующий НИЛ нанотехнологий Центра экспериментального биомоделирования Института экспериментальной медицины

Санкт-Петербург



Список литературы

1. El-Housiny S, Eldeen M A S, El-Attar YA, et al. Fluconazole-loaded solid lipid nanoparticles topical gel for treatment of pityriasis versicolor: formulation and clinical study. Drug Deliv. 2018;25(1):78-90.

2. Millstone JE, Kavulak DFJ, Woo CH, et al. Synthesis, properties, and electronic applications of size-controlledpoly(3-hexylthiophene) nanoparticles. Langmuir. 2010;26:13056–13061.

3. Arroyo GV, Madrid AT, Gavilanes AF, et al. Green synthesis of silver nanoparticles for application in cosmetics. Journal of environmental science and health, part A. 2020;55(11):1304-1320.

4. Gao Y, Wu Y, Lu H, et al. CsPbBr3 perovskite nanoparticles as additive for environmentally stable perovskite solar cells with 20.46% efficiency. Nano Energy. 2019;63:103838.

5. Lin CH, Lee GB, Lin YH, et al. A Fast Prototyping Process for Fabrication of Microfluidic Systems on Soda-Lime Glass. J. Micromech. Microeng. 2001;11:726–732.

6. Torabinia M, Asgari P, Dakarapu U, et al. Onchip organic synthesis enabled by engine-and-cargo in an electrowetting-on-dielectric digital microfluidic device. Lab Chip. 2019;19:3054-3064.

7. Herranz-Blanco B, Ginestar E, Zhang H, et al. Microfluidics platform for glass capillaries and its application in droplet and nanoparticle fabrication. Int J Pharm. 2017;516(1–2):100-105.

8. Talebi S, Abedini A, Lele P, et al. Microfluidics- based measurement of solubility and diffusion coefficient of propane in bitumen. Fuel. 2017;210:23–31.

9. Mukherjee P, Nebuloni F, Gao H, et al. Rapid prototyping of soft lithography masters for microfluidic devices using dry film photoresist in a non-cleanroom setting. Micromachines. 2019;10(3):192.

10. Ivanov SV, Trachevskii VV, Stolyarova NV, et al. Plasmochemical modification of polymer surfaces. Rus J Appl Chem. 2006;79:445–447.

11. Kim DNH, Kim KT, Kim C, et al. Soft lithography fabrication of index-matched microfluidic devices for reducing artifacts in fluorescence and quantitative phase imaging. Microfluid Nanofluid. 2018;22:2.

12. Costa PF, Albers HJ, Linssen JEA, et al. Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular model based on computed tomography angiography data. Lab on a Chip. 2017;17(16):2785–2792.

13. Prabhakar A, Agrawal M, Mishra N, et al. Cost-effective smart microfluidic device with immobilized silver nanoparticles and embedded UV-light sources for synergistic water disinfection effects. RSC Advances. 2020;10(30):17479–17485.

14. Lopez C, Oza G, Casannova JR, et al. Proposal to Develop a Microfluidic Platform with GMR Sensors and the Use of Magnetic Nanoparticles in Order to Detect Cancerous Cells: Preliminary experimentation. Global Medical Engineering Physics Exchanges/ Pan American Health Care Exchanges (GMEPE/PAHCE). 26-31 March 2019: 18691807.

15. Hao N, Nie Y, Zhang JXJ. Microfluidic synthesis of functional inorganic micro-/nanoparticles and applications in biomedical engineering. International Materials Reviews. 2018;63(8):461-487.

16. Lin WZS, Malmstadt N. Liposome production and concurrent loading of drug simulants by microfluidic hydrodynamic focusing. Eur Biophys J. 2019;48(6):549-558.

17. Wang Y, Seidel M. Strategy for fast manufacturing of 3D hydrodynamic focusing multilayer microfluidic chips and its application for flow-based synthesis of gold nanoparticles. Microfluid Nanofluid. 2021;25:64.

18. Sounart TL, Safier PA, Voigt JA, et al. Spatially- resolved analysis of nanoparticle nucleation and growth in a microfluidic reactor. Lab Chip. 2007;7:908–915.

19. Tofighi G, Lichtenberg H, Pesek J, et al. Continuous microfluidic synthesis of colloidal ultrasmall gold nanoparticles: in situ study of the early reaction stages and application for catalysis. React. Chem. Eng. 2017;2:876–884.

20. Haoa N, Xua Z, Niea Y, et al. Microfluidics-enabled rational design of ZnO micro-/nanoparticles withenhanced photocatalysis, cytotoxicity, and piezoelectric properties. Chem Eng J. 2019;378:122222.

21. Zhang Y, Tong X, Yang L, et al. A herringbone mixer based microfluidic device HBEXO-chip for purifying tumor-derived exosomes and establishing miRNA signature in pancreatic cancer. Sensors and Actuators B: Chemical. 2021;332:129511.

22. Christopher GF, Anna SL. Microfluidic methods for generating continuous droplet streams. J Phys D: Appl Phys. 2007;40:R319.

23. Schimel TM, Nguyen MA, Sarles SA, et al. Pressure-driven generation of complex microfluidic droplet networks. Microfluidics and Nanofluidics. 2021;25:78.

24. Xie T, Wang P, Wu L, et al. A hand-powered microfluidic system for portable and low-waste sample discretization. Lab on a Chip. 2021;21:3429-3437.

25. Davis JJ, Padalino M, Kaplitz AS, et al. Utility of low-cost, miniaturized peristaltic and Venturi pumps in droplet microfluidics. Analytica Chimica Acta. 2021;1151:338230.

26. Khizar S, Halima HB, Ahmad NM, et al. Magnetic nanoparticles in microfluidic and sensing: From transport to detection. Electrophoresis. 2020;41(13-14):1206-1224.

27. Abedini-Nassab R, Miandoab MP, Şaşmaz M. Microfluidic Synthesis, Control, and Sensing of Magnetic Nanoparticles: A Review. Micromachines (Basel). 2021;12(7):768.

28. Bemetz J, Wegemann A, Saatchi K, et al. Microfluidic-Based Synthesis of Magnetic Nanoparticles Coupled with Miniaturized NMR for Online Relaxation Studies. Anal Chem. 2018;90(16):9975-9982.

29. Hermann CA, Mayer M, Griesche C, et al. Microfluidic-enabled magnetic labelling of nanovesicles for bioanalytical applications. Analyst. 2021;146(3):997-1003.

30. Rao L, Cai B, Bu LL, et al. Microfluidic Electroporation- Facilitated Synthesis of Erythrocyte Membrane- Coated Magnetic Nanoparticles for Enhanced Imaging-Guided Cancer Therapy. ACS Nano. 2017;11(4): 3496-3505.

31. Ma J, Yi C, Li CW. Facile synthesis and functionalization of color-tunable Ln3+-doped KGdF4 nanoparticles on a microfluidic platform. Mater Sci Eng C Mater Biol Appl. 2020;108:110381.

32. Мелерзанов А, Москалев А, Жаров В. Прецизионная медицина и молекулярная тераностика. Врач. 2016;2:11-14.

33. Stratified, personalised or P4 medicine: a new direction for placing the patient at the centre of healthcare and health education (Technical report). Academy of Medical Sciences, 2015. p. 37.

34. Papavassiliou AG. Transcription-factormodulating agents: precision and selectivity in drug design. Mol Med Today. 1998;4(8):358-66.

35. Kalash RS, Lakshmanan VK, Cho CS, et al. Theranostics. In: Mitsuhiro Ebara. Biomaterials Nanoarchitectonics. Elsevier Inc., 2016:197–215.

36. Mosayebi J, Kiyasatfar M, Laurent S. Synthesis, Functionalization, and Design of Magnetic Nanoparticles for Theranostic Applications. Adv. Healthcare Mater. 2017;6:1700306.

37. Khositanon C, Adpakpang K, Bureekaew S, et al. Continuous-flow purification of silver nanoparticles and its integration with flow synthesis. J Flow Chem. 2020;10:353–362.

38. Chastek TQ, Iida K, Amis EJ, et al. A microfluidic platform for integrated synthesis and dynamic light scattering measurement of block copolymer micelles. Lab on a Chip. 2008;8(6):950–957.

39. Perro A, Lebourdon G, Henry S, et al. Combining microfluidics and FT-IR spectroscopy: towards spatially resolved information on chemical processes. React. Chem. Eng. 2016;1:577–594.

40. Măriuţa D, Colin S, Barrot-Lattes C, et al. Miniaturization of fluorescence sensing in optofluidic devices. Microfluid Nanofluid. 2020;24:65.

41. Ryu G, Huang J, Hofmann O, et al. Highly sensitive fluorescence detection system for microfluidic lab-on-a-chip. Lab on a Chip. 2011;11(9):1664.

42. Bates KE, Lu H. Optics-Integrated Microfluidic Platforms for Biomolecular Analyses. Biophysical Journal. 2016;110(8):1684-1697.

43. Li Z, Ju R, Sekine S, et al. All-in-one microfluidic device for on-site diagnosis of pathogens based on integrated continuous flow PCR and electrophoresis biochip. Lab Chip. 2019;19:2663–2668.

44. Bomers M, Charlot B, Barho F, et al. Microfluidic surface-enhanced infrared spectroscopy with semiconductor plasmonics for the fingerprint region. React Chem Eng. 2020;5:124.

45. Vaccari L, Birarda G, Businaro L, et al. Infrared Microspectroscopy of Live Cells in Microfluidic Devices (MD-IRMS): Toward a Powerful Label-Free Cell-Based Assay. Analytical Chemistry. 2012;84(11):4768–4775.

46. Xiao L, Zhang P, Li W, et al. Multi-angle Fiber DLS system Based on Microfluidics Technology. International Applied Computational Electromagnetics Society Symposium. China (ACES). 2019:19565492.

47. McArdle H, Jimenez-Mateos EM, Raoof R, et al. “TORNADO” – Theranostic One-Step RNA Detector; microfluidic disc for the direct detection of microRNA-134 in plasma and cerebrospinal fluid. Sci Rep. 2017;7:1750.

48. Kaur G, Tomar M, Gupta V. Development of a microfluidic electrochemical biosensor: Prospect for point-of-care cholesterol monitoring. Sensors and Actuators B: Chemical. 2018;261:460–466.

49. Shin SR, Kilic T, Zhang YS, et al. Label-Free and Regenerative Electrochemical Microfluidic Biosensors for Continual Monitoring of Cell Secretomes. Advanced Science. 2017;4(5):1600522.

50. Kirsch J, Siltanen C, Zhou Q, et al. Biosensor technology: recent advances in threat agent detection and medicine Chem Soc Rev. 2013;42:8733–8768.

51. Ghrera AS, Pandey CM, Malhotra BD. Multiwalled carbon nanotube modified microfluidic-based biosensor chip for nucleic acid detection. Sensors and Actuators B: Chemical. 2018;266:329–336.

52. Jiang H, Jiang D, Zhu P, et al. A novel mast cell co-culture microfluidic chip for the electrochemical evaluation of food allergen. Biosensors and Bioelectronics. 2016; 83: 126–133.

53. Campaña A, Florez S, Noguera M, et al. Enzyme-Based Electrochemical Biosensors for Microfluidic Platforms to Detect Pharmaceutical Residues in Wastewater. Biosensors. 2019;9(1):41.

54. Arora A, Simone G, Salieb-Beugelaar GB, et al. Latest Developments in Micro Total Analysis Systems. Analytical Chemistry. 2010;82(12):4830–4847.

55. Fernández-la-Villa A, Pozo-Ayuso DF, CastañoÁlvarez M. Microfluidics and electrochemistry: An emerging tandem for next-generation analytical microsystems. Current Opinion in Electrochemistry. 2019;15:175-185.

56. Haeberle S, Zengerle R. Microfluidic platforms for lab-on-a-chip applications. Lab Chip. 2007;7:1094–1110.

57. Rackus DG, Shamsi MH, Wheeler AR. Electrochemistry, biosensors and microfluidics: a convergence of fields. Chemical Society Reviews. 2015;44(15):5320–5340.

58. Jin Z, Liu Y, Fan W, et al. Integrating Flexible Electrochemical Sensor into Microfluidic Chip for Simulating and Monitoring Vascular Mechanotransduction. Small. 2019:1903204.

59. Wang S, Zheng L, Cai G, et al. A microfluidic biosensor for online and sensitive detection of Salmonella typhimurium using fluorescence labeling and smartphone video processing. Biosensors and Bioelectronics. 2019:111333.

60. Ahadian S, Civitarese R, Bannerman D, et al. Organ-On-A-Chip Platforms: A Convergence of Advanced Materials, Cells, and Microscale Technologies. Adv Healthc Mater. 2018;7:1700506.

61. Asif A, Kim KH, Jabbar F, et al. Real-time sensors for live monitoring of disease and drug analysis in microfluidic model of proximal tubule. Microfluid Nanofluid. 2020;24:43.

62. Khetani S, Yong KW, Kollath, VO, et al. Engineering Shelf-Stable Coating for Microfluidic Organon- a-Chip using Bioinspired Catecholamine Polymers. ACS Appl Mater Interfaces. 2020;12(6):6910-6923.

63. Arefi SMA, Tony Yang CWT, Sin DD, et al. Simulation of nanoparticle transport and adsorption in a microfluidic lung-on-a-chip device. Biomicrofluidics. 2020;14(4):044117.

64. Xia Y, Chen Y, Tang Y et al. A Smartphone-based Point-of-care Microfluidic Platform Fabricated with ZnO Nanorod Template for Colorimetric Virus Detection. ACS Sensors. 2019 ;4(12):3298-3307.

65. Wang Y, Wang P, Qin J. Microfluidic Organs-ona- Chip for Modeling Human Infectious Diseases. Acc. Chem. Res. 2021;54(18):3550–3562.

66. Olofsson S, Brittain-Long R, Andersson LM, et al. PCR for detection of respiratory viruses: seasonal variations of virus infections. Expert Rev Anti Infect Ther. 2011;9(8):615–626.

67. Saijo M, Morikawa S, Kurane I. Real-time quantitative polymerase chain reaction for virus infection diagnostics. Expert Opin Med Diagn. 2008;2(10):1155–1171.

68. Whitman JD, Hiatt J, Mowery CT, et al. Evaluation of SARS-CoV-2 serology assays reveals a range of test performance. Nat Biotechnol. 2020;38(10):1174–1183.

69. Peeling RW, Wedderburn CJ, Garcia PJ, et al. Serology testing in the COVID-19 pandemic response. Lancet. 2020;20(9):E245–E249.

70. Derakhshan MA, Amani A, Faridi-Majidi R. Stateof- the-Art of Nanodiagnostics and Nanotherapeutics against SARS-CoV-2. ACS Appl Mater Interfaces. 2021;13(13):14816–14843.

71. Bellan LM, Wu D, Langer RS. Current trends in nanobiosensor technology. Wiley Interdiscip. Rev Nanomed Nanobiotechnol. 2011;3(3):229–246.

72. Talebian S, Wallace GG, Schroeder A, el at. Nanotechnology- based disinfectants and sensors for SARSCoV-2. Nat Nanotechnol. 2020;15(8):618–621.

73. Saxena A, Khare D, Agrawal S et al. Recent advances in materials science: a reinforced approach toward challenges against COVID-19. Emergent Mater. 2021;4(1):57–73.

74. Chintagunta AD, M SK, Nalluru S, et al. Nanotechnology: An emerging approach to combat COVID-19. Emergent Mater. 2021;4:119–130.

75. Hassanzadeh P. Nanotheranostics against COVID-19: From multivalent to immune-targeted materials. J Control Release. 2020;328:112–126.

76. Akhmedova DA, Shatalov DO, Ivanov IS, et al. The use of microfluidic hardware in the synthesis of oligohexamethylene guanidine derivatives. Fine Chemical Technologies. 2021;16(4):307-317.

77. Woolley AT, Hadley В, Landre P, et al. Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. Anal. Chem. 1996;68(23):4081–4086.

78. Кухтевич И.В., Евстрапов А.А., Букатин А.С. Микрофлюидные устройства для исследований клеток (обзор). Научное приборостроение. 2013;4:66–75.

79. Занавескин М.Л., Миронова А.А., Попов А.М. и др. Применение микрофлюидной технологии для синтеза радиофармпрепаратов, меченных 18F. Медицинская физика. 2013;4:44-51.


Рецензия

Для цитирования:


Лазарева Е.О., Евстрапов А.А., Гареев К.Г., Чебуркин Ю.В., Крижанович А., Королев Д.В. Синтез микро- и наночастиц в микрофлюидных реакторах для биомедициского применения. Российский журнал персонализированной медицины. 2021;1(1):207-236.

For citation:


Lazareva E.O., Evstrapov A.A., Gareev K.G., Cheburkin Yu.V., Krizhanovich A., Korolev D.V. Synthesis of micro- and nanoparticles in microfluid reactors for biomedical applications. Russian Journal for Personalized Medicine. 2021;1(1):207-236.

Просмотров: 332


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2782-3806 (Print)
ISSN 2782-3814 (Online)