Молекулярные механизмы лекарственной устойчивости глиобластомы: дифференцировка и апоптоз
https://doi.org/10.18705/2782-3806-2023-3-6-29-41.
EDN: GXWGBJ
- Р Р‡.МессенРТвЂВВВВВВВВжер
- РћРТвЂВВВВВВВВнокласснРСвЂВВВВВВВВРєРСвЂВВВВВВВВ
- LiveJournal
- Telegram
- ВКонтакте
- РЎРєРѕРїРСвЂВВВВВВВВровать ссылку
Полный текст:
Аннотация
Глиобластомы (ГБМ) представляют одну из самых злокачественных и частых опухолей человека, характеризующихся быстрым ростом, метастазированием, устойчивостью к методам терапии и образованием рецидивов. Формирование в клетках ГБМ механизмов множественной лекарственной устойчивости (МЛУ) часто сочетается с ингибированием путей клеточной гибели, дифференцировки и препятствует увеличению эффективности терапии этой группы пациентов. В обзоре рассматривается взаимосвязь молекулярных механизмов МЛУ с дифференцировкой и апоптозом ГБМ с акцентом на выявление новых мишеней среди белков, микроРНК, генов-супрессоров и онкогенов.
Об авторах
А. Н. ЧерновРоссия
Чернов Александр Николаевич, к.б.н., научный сотрудник отдела микробной терапии; старший научный сотрудник отдела общей патологии и патофизиологии
ул. Академика Павлова, д. 12, Санкт-Петербург, 197376
Э. С. Галимова
Россия
Галимова Эльвира Сафуановна, к.б.н., старший научный сотрудник отдела общей патологии и патофизиологии
ул. Академика Павлова, д. 12, Санкт-Петербург, 197376
А. Н. Цапиева
Россия
Цапиева Анна Николаевна, к.б.н., научный сотрудник отдела микробной терапии НОЦ «Молекулярные
основы взаимодействия микроорганизмов и человека»
ул. Академика Павлова, д. 12, Санкт-Петербург, 197376
А. Н. Суворов
Россия
Суворов Александр Николаевич, д.м.н., профессор, член-корреспондент РАН, заведующий отделом микробной терапии НОЦ «Молекулярные основы взаимодействия микроорганизмов и человека»
ул. Академика Павлова, д. 12, Санкт-Петербург, 197376
О. В. Шамова
Россия
Шамова Ольга Валерьевна, д.б.н., член-корреспондент РАН, заместитель директора по научной работе, заведующая отделом общей патологии и патофизиологии ФГБНУ «ИЭМ», заведующая НИЛ альтернативных антимикробных биопрепаратов
ул. Академика Павлова, д. 12, Санкт-Петербург, 197376
Список литературы
1. Chen C-H, Chen P-Y, Lin Y-Y, et al. Suppression of tumor growth via IGFBP3 depletion as a potential treatment in glioma. J Neurosurg. 2019;132(1):168-179. https://doi.org/10.3171/2018.8.JNS181217.
2. Auffinger B, Spencer D, Pytel P, et al. The Role of Glioma Stem Cells in Chemotherapy Resistance and Glioblastoma Multiforme Recurrence. Expert Rev Neurother. 2015;15(7):741-52. https://doi.org/10.1586/14737175.2015.1051968.
3. Tang X, Zuo C, Fang P, et al. Targeting Glioblastoma Stem Cells: A Review on Biomarkers, Signal Pathways and Targeted Therapy. Front Oncol. 2021;11:701291. https://doi.org/10.3389/fonc.2021.701291.
4. Izquierdo-Garcia JL, Viswanath P, Eriksson P, et al. Metabolic reprogramming in mutant IDH1 glioma cells. PLoS One. 2015;10(2):e0118781. https://doi.org/10.1371/journal.pone.0118781.
5. Verhaak RGW, Hoadley KA, Purdom E, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98-110. https://doi.org/10.1016/j.ccr.2009.12.020.
6. Miller CR, Perry A. Glioblastoma. Arch Pathol Lab Med. 2007;131(3):397-406. https://doi.org/10.5858/2007-131-397-G.
7. Ducassou A, Uro-Coste E, Verrelle P, et al. αvα3 Integrin and Fibroblast growth factor receptor 1 (FGFR1): Prognostic factors in a phase I-II clinical trial associating continuous administration of Tipifarnib with radiotherapy for patients with newly diagnosed glioblastoma. Eur J Cancer. 2013;49(9):2161-9. https://doi.org/10.1016/j.ejca.2013.02.033.
8. Gouazé-Andersson V, Delmas C, Taurand M, et al. FGFR1 Induces Glioblastoma Radioresistance through the PLCα/Hif1α Pathway. Cancer Res. 2016;76(10):3036-44. https://doi.org/10.1158/0008-5472.CAN-15-2058.
9. Ciechomska IA, Gielniewski B, Wojtas B, et al. EGFR/FOXO3a/BIM signaling pathway determines chemosensitivity of BMP4-differentiated glioma stem cells to temozolomide. Exp Mol Med. 2020;52:1326-1340. https://doi.org/10.1038/s12276-020-0479-9.
10. Kim E-J, Kim S-O, Jin X, et al. Epidermal growth factor receptor variant III renders glioma cancer cells less differentiated by JAGGED1. Tumour Biol. 2015;36(4):2921-8. https://doi.org/10.1007/s13277-014-2922-9.
11. Yuan J, Xiao G, Peng G, et al. MiRNA-125a-5p inhibits glioblastoma cell proliferation and promotes cell differentiation by targeting TAZ. Biochem. Biophys. Res. Comm. 2015;457(2):171-176. https://doi.org/10.1016/j.bbrc.2014.12.078.
12. Yin D, Chen W, O’Kelly J, et al. Connective tissue growth factor associated with oncogenic activities and drug resistance in glioblastoma multiforme. Int J Cancer 2010;127(10):2257-67. https://doi.org/10.1002/ijc.25257.
13. Silber J, Lim DA, Petritsch C, et al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med. 2008;24(6):14. https://doi.org/10.1186/1741-7015-6-14.
14. Sana J, Busek P, Fadrus P, et al. Identification of microRNAs differentially expressed in glioblastoma stem-like cells and their association with patient survival. Sci Rep 2018;8:2836. https://doi.org/10.1038/s41598-018-20929-6.
15. Tomei S, Volontè A, Ravindran S, et al. MicroRNA Expression Profile Distinguishes Glioblastoma Stem Cells from Differentiated Tumor Cells. J Pers Med. 2021;11(4):264. https://doi.org/10.3390/jpm11040264.
16. Cardoso AM, Morais CM, Pena F, et al. Differentiation of Glioblastoma Stem Cells Promoted by miR-128 or miR-302a Overexpression Enhances Senescence-Associated Cytotoxicity of Axitinib. Hum Mol Genet. 2021;30(3-4):160-71. https://doi.org/10.1093/hmg/ddab011.
17. Safa AR, Saadatzadeh MR, Cohen-Gadol AA, et al. Glioblastoma stem cells (GSCs) epigenetic plasticity and interconversion between differentiated non-GSCs and GSCs. Genes Dis. 2015;2(2):152-163. https://doi.org/10.1016/j.gendis.2015.02.001.
18. Zhu J, Wang H, Fan Y, et al. Targeting the NF-E2-related factor 2 pathway: A novel strategy for glioblastoma. Oncol. Reports. 2014;32(2):443-450. https://doi.org/10.3892/or.2014.3259.
19. Gouazé-Andersson V, Ghérardi MJ, Lemarié A, et al. FGFR1/FOXM1 pathway: a key regulator of glioblastoma stem cells radioresistance and a prognosis biomarker. Oncotarget. 2018;9(60):31637-31649. https://doi.org/10.18632/oncotarget.25827.
20. Korkolopoulou P, Levidou G, El-Habr EA, et al. Sox11 expression in astrocytic gliomas: Correlation with nestin/c-Met/IDH1-R132H expression phenotypes, p-Stat-3 and survival. Brit. J. Cancer. 2013;108(10):2142-2152. https://doi.org/10.1038/bjc.2013.176.
21. Calvert AE, Chalastanis A, Wu Y, et al. Cancerassociated IDH1 promotes growth and resistance to targeted therapies in the absence of mutation. Cell Rep. 2017;19(9):1858-1873. https://doi.org/10.1016/j.celrep.2017.05.014.
22. Bai Y, Lathia JD, Zhang P, et al. Molecular targeting of TRF2 suppresses the growth and tumorigenesis of glioblastoma stem cells. Glia. 2014;62(10):1687-1698. https://doi.org/10.1002/glia.22708.
23. Chudnovsky Y, Kim D, Zheng S. ZFHX4 interacts with the NuRD core memberCHD4 and regulates the glioblastoma tumor-initiating cell state. Cell Rep. 2014;6:313-324. https://doi.org/10.1016/j.celrep.2013.12.032.
24. Zhou D, Alver BM, Li S, et al. Distinctive epigenomes characterize glioma stem cells and their response to differentiation cues. Genome Biol. 2018;19:43. https://doi.org/10.1186/s13059-018-1420-6.
25. MacLeod G, Bozek DA, Rajakulendran N, et al. The functional genomic circuitry of human glioblastoma stem cells. https://doi.org/10.1101/358432.
26. Zhang J, Chen L, Han L, et al. EZH2 is a negative prognostic factor and exhibits pro-oncogenic activity in glioblastoma. Cancer Lett. 2015;356(2PtB):929-36. https://doi.org/10.1016/j.canlet.2014.11.003.
27. Huang M, Zhang D, Wu JY, et al. Wnt-mediated endothelial transformation into mesenchymal stem cell-like cells induces chemoresistance in glioblastoma. Sci Transl Med. 2020;12(532):eaay7522. https://doi.org/10.1126/scitranslmed.aay7522.
28. Fiscon G, Conte F, Licursi V, et al. Computational identification of specific genes for glioblastoma stem-like cells identity. Sci Rep 2018;8:7769. https://doi.org/10.1038/s41598-018-26081-5.
29. Suva, ML, Rheinbay E, Gillespie SM, et al. Reconstructing and reprogramming the tumorpropagating potential of glioblastoma stem-likecells. Cell 2014;157(3):580-594. https://doi.org/10.1016/j.cell.2014.02.030.
30. Rheinbay E, Suvà ML, Gillespiet SM, al. An aberrant transcription factor network essential for wnt signaling and stem cell maintenance in glioblastoma. Cell reports 2013;3(5):1567-1579. https://doi.org/10.1016/j.celrep.2013.04.021.
31. Kärrlander M, Lindberg N, Olofsson T, et al. Histidine-rich glycoprotein can prevent development of mouse experimental glioblastoma. PLoS One. 2009;4(12):e8536. https://doi.org/10.1371/journal.pone.0008536.
32. González-Gómez P, Crecente-Campo J, Zahonero C, et al. Controlled release microspheres loaded with BMP7 suppress primary tumors from human glioblastoma. Oncotarget 2015;6(13):10950-63. https://doi.org/10.18632/oncotarget.3459.
33. Rodriguez V, Bailey R, Larion M, et al. Retinoid receptor turnover mediated by sumoylation, ubiquitination and the valosin-containing protein is disrupted in glioblastoma. Sci Rep. 2019;9(1):16250. https://doi.org/10.1038/s41598-019-52696-3.
34. Zeng H, Yang Z, Xu N, et al. Connective tissue growth factor promotes temozolomide resistance in glioblastoma through TGF-α1-dependent activation of Smad/ERK signaling. Cell Death Dis. 2017;8(6):e2885. https://doi.org/10.1038/cddis.2017.248.
35. Clark PA, Iida M, Treisman DM, et al. Activation of multiple ERBB family receptors mediates glioblastoma cancer stem-like cell resistance to EGFR-targeted inhibition. Neoplasia. 2012;14(5):420-8. https://doi.org/10.1596/neo.12432.
36. Maris C, D’Haene N, Trépant A-L, et al. IGF-IR: a new prognostic biomarker for human glioblastoma. Br J Cancer. 2015;113(5):729-737. https://doi.org/10.1038/bjc.2015.242.
37. Tirrò E, Massimino M, Romano C, et al. Prognostic and Therapeutic Roles of the Insulin Growth Factor System in Glioblastoma. Front Oncol. 2021;10:612385. https://doi.org/10.3389/fonc.2020.612385.
38. Schreck KC, Taylor P, Marchionni L, et al. The Notch target Hes1 directly modulates Gli1 expression and hedgehog signaling: a potential mechanism of therapeutic resistance. Clin Cancer Res. 2016;22(14):3700-1. https://doi.org/10.1158/1078-0432.CCR-16-1194.
39. Yang F, Nam S, Brown CE, et al. A novel berbamine derivative inhibits cell viability and induces apoptosis in cancer stem-like cells of human glioblastoma, via up-regulation of miRNA-4284 and JNK/AP-1 signaling. PLoS One. 2014;9(4):e94443. https://doi.org/10.1371/journal.pone.0094443.
40. Liu Z-H, Dai X-M, Du B. Hes1: a key role in stemness, metastasis and multidrug resistance. Cancer Biol Ther. 2015; 16(3): 353-359. https://doi.org/10.1080/15384047.2015.1016662.
41. Popescu AM, Alexandru O, Brindusa C, et al. Targeting the VEGF and PDGF signaling pathway in glioblastoma treatment. Int. J. Clin. Exp. Pathol. 2015;8(7):7825-7837.
42. Valdés-Rives SA, Casique-Aguirre D, Germán-Castelán L, et al. Apoptotic Signaling Pathways in Glioblastoma and Therapeutic Implications. Biomed Res Int. 2017;2017: 7403747. https://doi.org/10.1155/2017/7403747.
43. Fan TY, Wang H, Xiang P, et al. Inhibition of EZH2 reverses chemotherapeutic drug TMZ chemosensitivity in glioblastoma. Int. J. Clin. Exp. Pathol. 2014;7(10):6662-6670.
44. Zhang J, Chen L, Han L, et al. EZH2 is a negative prognostic factor and exhibits pro-oncogenic activity in glioblastoma. Cancer Lett. 2015;356(2PtB):929-36. https://doi.org/10.1016/j.canlet.2014.11.003.
45. Zhang L, Wang H. FTY720 inhibits the Nrf2/ARE pathway in human glioblastoma cell lines and sensitizes glioblastoma cells to temozolomide. Pharmacol Rep. 2017;69(6):1186-1193. https://doi.org/10.1016/j.pharep.2017.07.003.
46. Zhou Y, Wang H-D, Zhu L. Knockdown of Nrf2 enhances autophagy induced by temozolomide in U251 human glioma cell line. Oncol. Reports. 2013;29(1):394-400. https://doi.org/10.3892/or.2012.2115.
47. Ji X, Wang H, Zhu J, et al. Correlation of Nrf2 and HIF-1α in glioblastoma and their relationships to clinicopathologic features and survival. Neurol. Res. 2013;35(10):1044-1050. https://doi.org/10.1179/1743132813Y.0000000251.
48. Zhu J, Wang H, Fan Y, et al. Targeting the NF-E2-related factor 2 pathway: A novel strategy for glioblastoma. Oncol. Reports. 2014;32(2): 443-450. https://doi.org/10.3892/or.2014.3259.
49. Reily Rocha CR, Kajitani GS, Quinet A, et al. NRF2 and glutathione are key resistance mediators to temozolomide in glioma and melanoma cells. Oncotarget. 2016;7(30):48081-48092. https://doi.org/10.18632/oncotarget.10129.
50. García-Gómez P, Dadras M, Bellomo C, et al. NOX4 regulates TGFα-induced proliferation and self-renewal in glioblastoma stem cells. bioRxiv preprint 2019; https://doi.org/10.1101/804013.
51. Agnihotri S, Wolf A, Picard D, et al. GATA4 is a regulator of astrocyte cell proliferation and apoptosis in the human and murine central nervous system. Oncogene. 2009;28(34):3033-3046. https://doi.org/10.1038/onc.2009.159.
52. Lan J, Xue Y, Chen H, et al. Hypoxia-induced miR-497 decreases glioma cell sensitivity to TMZ by inhibiting apoptosis. FEBS Lett. 2014;588(8):3333-3339. https://doi.org/10.1016/j.febslet.2014.07.021.
53. Zhang JM, Sun CY, Yu SZ, et al. Relationship between miR-218 and CDK6 expression and theirbiological impact on glioma cell proliferation and apoptosis. Zhonghua Bing Li Xue Za Zhi. 2011;40:454-59.
54. Xia H, Yan Y, Hu M, et al. MiR-218 sensitizes glioma cells to apoptosis and inhibits tumorigenicity by regulating ECOP-mediated suppression of NF-αB activity. Neuro Oncol. 2013;15:413-22. https://doi.org/10.1093/neuonc/nos296.
55. Ahmed SP, Castresana JS, Shahi MH. Glioblastoma and MiRNAs. Cancers 2021,13:1581.
56. https://doi.org/10.3390/cancers13071581.
57. Li L, Gao R, Yu Y, et al. Tumor suppressor activity of miR-451: Identification of CARF as a new target. Sci Rep 2018;8:375. https://doi.org/10.1038/s41598-017-18559-5.
58. Korać P, Antica M, Matulić M. MiR-7 in Cancer Development. Biomedicines. 2021;9(3):325. https://doi.org/10.3390/biomedicines9030325.
59. Duan J, Zhou K, Tang X, et al. MicroRNA-34a inhibits cell proliferation and induces cell apoptosis of glioma cells via targeting of Bcl-2. Mol Med Rep. 2016;14:432-38. https://doi.org/10.3892/mmr.2016.5255.
60. Shan ZN, Tian R, Zhang M, et al. miR128-1 inhibits the growth of glioblastoma multiforme and glioma stem-like cells via targeting BMI1 and E2F3. Oncotarget. 2016;7:78813-26. https://doi.org/10.18632/oncotarget.12385.
61. Chen M, Medarova Z, Moore А. Role of microRNAs in glioblastoma. Oncotarget. 2021;12:1707-1723. https://doi.org/10.18632/oncotarget.28039.
62. Anthiya S, Griveau A, Loussouarn C, et al. MicroRNA-based Drugs for Brain Tumours. Trends in Cancer. Cell Press. 2018;4(3):222-238. https://doi.org/10.1016/j.trecan.2017.12.008ff.ffinserm-01691531.
63. Banelli B, Forlani A, Allemanni G, et al. MicroRNA in Glioblastoma: An Overview. International Journal of Genomics. 2017;2017: ArticleID:7639084. https://doi.org/10.1155/2017/7639084.
64. Tang H, Bian Y, Tu C, et al. The miR-183/96/182 cluster regulates oxidative apoptosis and sensitizes cells to chemotherapy in gliomas. Curr Cancer Drug Targets. 2013;13(2):221-31. https://doi.org/10.2174/1568009611313020010.
65. Chen Y-Y, Ho H-L, Lin S-C, et al. Upregulation of miR-125b, miR-181d, and miR-221 Predicts Poor Prognosis in MGMT Promoter-Unmethylated Glioblastoma Patients. Am J Clin Pathol. 2018;149(5):412-417. https://doi.org/10.1093/ajcp/aqy008
66. Song J, Ouyang Y, Che J, et al. Potential Value of miR-221/222 as Diagnostic, Prognostic, and Therapeutic Biomarkers for Diseases. Front Immunol. 2017;8:56. https://doi.org/10.3389/fimmu.2017.00056.
67. Chen L, Zhang J, Han L, et al. Downregulation of miR-221/222 sensitizes glioma cells to temozolomide by regulating apoptosis independently of p53 status. Oncol Rep. 2012;27:854-60. https://doi.org/10.3892/or.2011.1535.
68. Li W, Guo F, Wang P, et al. miR-221/222 confers radioresistance in glioblastoma cells through activating Akt independent of PTEN status. Curr Mol Med. 2014;14:185-95. https://doi.org/10.2174/1566524013666131203103147.
69. Shu M, Zheng X, Wu S, et al. Targeting oncogenic miR-335 inhibits growth and invasion of malignant astrocytoma cells. Mol Cancer. 2011;10:59. https://doi.org/10.1186/1476-4598-10-59.
70. Scarola M, Schoeftner S, Schneider C, et al. miR-335 directly targets Rb1 (pRb/p105) in a proximal connection to p53-dependent stress response. Cancer Res. 2010;70(17):6925-33. https://doi.org/10.1158/0008-5472.CAN-10-0141.
71. Yang F, Nam S, Brown CE, et al. A novel berbamine derivative inhibits cell viability and induces apoptosis in cancer stem-like cells of human glioblastoma, via up-regulation of miRNA-4284 and JNK/AP-1 signaling. PLoS One. 2014;9(4):e94443. https://doi.org/10.1371/journal.pone.0094443.
72. Mellai M, Piazzi A, Caldera V, et al. Promoter hypermethylation of the EMP3 gene in a series of 229 human gliomas. BioMed Res. Int. 2013;2013:756302. https://doi.org/10.1155/2013/756302.
73. Li K, Ouyang L, He M, et al. IDH1 R132H mutation regulates glioma chemosensitivity through Nrf2 pathway. Oncotarget. 2017;8:28865-28879. https://doi.org/10.18632/oncotarget.15868.
74. Colardo M, Segatto M, Di Bartolomeo S. Targeting RTK-PI3K-mTOR Axis in Gliomas: An Update. Int. J. Mol. Sci. 2021;22:4899. https://doi.org/10.3390/ijms22094899.
75. Duzgun Z, Eroglu Z, Biray Avci C. Role of mTOR in glioblastoma. Gene. 2016; 575(2 Pt 1):187-90. https://doi.org/10.1016/j.gene.2015.08.060.
76. Zając A, Sumorek-Wiadro J, Langner E, et al. Involvement of PI3K Pathway in Glioma Cell Resistance to Temozolomide Treatment. Int J Mol Sci. 2021;22(10):5155. https://doi.org/10.3390/ijms22105155.
77. Zhou W, Liu L, Xue Y, et al. Combination of Endothelial-Monocyte-Activating Polypeptide-II with Temozolomide Suppress Malignant Biological Behaviors of Human Glioblastoma Stem Cells via miR-590-3p/MACC1 Inhibiting PI3K/AKT/mTOR Signal Pathway. Front Mol Neurosci. 2017;10:68. https://doi.org/10.3389/fnmol.2017.00068.
78. Shang C, Hong Y, Guo Y, et al. Influence of the MACC1 gene on sensitivity to chemotherapy in human U251 glioblastoma cells. Asian Pac. J. Cancer Prev. 2015;16(1):195-199. https://doi.org/10.7314/apjcp.2015.16.1.195.
79. Pojo M, Gonçalves CS, Xavier-Magalhães A, et al. A transcriptomic signature mediated by HOXA9 promotes human glioblastoma initiation, aggressiveness and resistance to temozolomide. Oncotarget. 2015;6(10):7657-7674. https://doi.org/10.18632/oncotarget.3150.
80. Le Mercier M, Lefranc F, Mijatovic T, et al. Evidence of galectin-1 involvement in glioma chemoresistance.Toxicol. Appl. Pharmacol. 2008;229(2);172-183. https://doi.org/10.1016/j.taap.2008.01.009.
81. Tanaka T, Sasaki A, Tanioka D, et al. Analysis of p53 and miRNA expressions after irradiation in glioblastoma cell lines. J. Showa Med. Assoc. 2012;72(2):238-244.
82. Jesionek-Kupnicka D, Braun M, Trąbska-Kluch B, et al. MiR-21, miR-34a, miR-125b, miR-181d and miR-648 levels inversely correlate with MGMT and TP53 expression in primary glioblastoma patients. Arch Med Sci. 2019;15(2):504-512. https://doi.org/10.5114/aoms.2017.69374.
83. Giacomelli C, Natali L, Trincavelli ML, et al. New insights into the anticancer activity of carnosol: p53 reactivation in the U87MG human glioblastoma cell line. Int. J. Biochem. Cell Biol. 2016;74:95-108. https://doi.org/10.1016/j.biocel.2016.02.019.
84. Vadysirisack DD, Baenke F, Ory B, et al. Feedback control of p53 translation by REDD1 and mTORC1 limits the p53-dependent DNA damage response. Mol. Cell Biol. 2011;31(21): 4356-4365. https://doi.org/10.1128/MCB.05541-11.
85. George J, Gondi CS, Dinh DH, et al. Restoration of tissue factor pathway inhibitor-2 in a human glioblastoma cell line triggers caspase-mediated pathway and apoptosis. Clin. Cancer Res. 2007;13(12):3507-3517. https://doi.org/10.1158/1078-0432.CCR-06-3023.
86. Wagner L, Marschall V, Karl S, et al. Smac mimetic sensitizes glioblastoma cells to Temozolomide-induced apoptosis in a RIP1- and NF-αB-dependent manner. Oncogene. 2013;32(8):988-997. https://doi.org/10.1038/onc.2012.108.
87. Gondi CS, Talluri L, Dinh DH, et al. RNAi-mediated downregulation of MMP-2 activates the extrinsic apoptotic pathway in human glioma xenograft cells. Int. J. Oncol. 2009;35(4):851-859. https://doi.org/10.3892/ijo_00000399.
88. Mohanty S, Chen Z, Li K, et al. A novel theranostic strategy for MMP-14-expressing glioblastomas impacts survival. Mol. Cancer Ther. 2017;16(9):1909-1921. https://doi.org/10.1158/1535-7163.MCT-17-0022.
89. Tamannai M, Farhangi S, Truss M, et al. The inhibitor of growth 1 (ING1) is involved in trichostatin A-induced apoptosis and caspase 3 signaling in p53-deficient glioblastoma cells. Oncol. Res. 2010;18(10):469-480. https://doi.org/10.3727/096504010x12704916124828.
90. Kouri FM, Jensen SA, Stegh AH. The role of Bcl-2 family proteins in therapy responses of malignant astrocytic gliomas: Bcl2L12 and beyond. Scientific World J. 2012;2012:838916. https://doi.org/10.1100/2012/838916.
91. Burton TR, Henson ES, Azad MB, et al. BNIP3 acts as transcriptional repressor of death receptor-5 expression and prevents TRAIL-induced cell death in gliomas. Cell Death Dis. 2013;4(6):e587. https://doi.org/10.1038/cddis.2013.100.
92. Lin S-P, Lee Y-T, Wang J-Y, et al. Survival of cancer stem cells under hypoxia and serum depletion via decrease in PP2A activity and activation of p38-MAPKAPK2-Hsp27. PLoS One. 2012;7(11):e49605. https://doi.org/10.1371/journal.pone.0049605.
93. Markouli M, Strepkos D, Papavassiliou AG, et al. Targeting of endoplasmic reticulum (ER) stress in gliomas Pharmacol Res. 2020;157:104823. https://doi.org/10.1016/j.phrs.2020.104823.
94. Jakubowicz-Gil J, Bądziul D, Langner E, et al. Temozolomide and sorafenib as programmed cell death inducers of human glioma cells. Pharmacol Rep. 2017;69(4):779-787. https://doi.org/10.1016/j.pharep.2017.03.008.
95. Jin F, Zhao L, Guo Y-J, et al. Influence of Etoposide on anti-apoptotic and multidrug resistance-associated protein genes in CD133 positive U251 glioblastoma stem-like cells. Brain Res. 2010;1336;103-111. https://doi.org/10.1016/j.brainres.2010.04.005.
96. Zheng LT, Lee S, Yin GN, et al. Down-regulation of lipocalin 2 contributes to chemoresistance in glioblastoma cells. J. Neurochem. 2009;111(5):1238-1251. https://doi.org/10.1111/j.1471-4159.2009.06410.x.
97. Zeng L, Kang C, Di C, et al. The adherens junction-associated protein 1 is a negative transcriptional regulator of MAGEA2, which potentiates temozolomide-induced apoptosis in GBM. Int. J. Oncol. 2014;44(4);1243-1251. https://doi.org/10.3892/ijo.2014.2277.
98. Ciechomska IA, Przanowski P, Jackl J, et al. BIX01294, an inhibitor of histone methyltransferase, induces autophagy-dependent differentiation of glioma stem-like cells. Sci. Rep. 2016; 6:38723.
Рецензия
Для цитирования:
Чернов А.Н., Галимова Э.С., Цапиева А.Н., Суворов А.Н., Шамова О.В. Молекулярные механизмы лекарственной устойчивости глиобластомы: дифференцировка и апоптоз. Российский журнал персонализированной медицины. 2023;3(6):29-41. https://doi.org/10.18705/2782-3806-2023-3-6-29-41.. EDN: GXWGBJ
For citation:
Chernov A.N., Galimova E.S., Tsapieva A.N., Suvorov A.N., Shamova O.V. The molecular mechanisms of drug resistance of glioblastoma: differentiation and apoptosis. Russian Journal for Personalized Medicine. 2023;3(6):29-41. (In Russ.) https://doi.org/10.18705/2782-3806-2023-3-6-29-41.. EDN: GXWGBJ
ISSN 2782-3814 (Online)