Молекулярные механизмы венозных тромботических осложнений при глиальных опухолях центральной нервной системы
https://doi.org/10.18705/2782-3806-2024-4-2-87-95
EDN: QWWNLG
Аннотация
Онкологические больные подвержены повышенному риску венозных тромбоэмболических осложнений (ВТЭО), которые являются частой причиной смерти у данных пациентов. При этом максимальная частота ВТЭО приходится на опухоли центральной нервной системы, среди которых лидирующие позиции занимают опухоли глиального происхождения [1]. Исследования по выявлению лабораторных биомаркеров повышенного риска ВТЭО проводятся, но на сегодняшний день данные об их роли неоднозначны. Показано, что пациенты с мутацией в гене изоцитратдегидрогеназы (IDH) подвержены меньшему риску ВТЭО, а сама мутация IDH связана с подавлением производства тканевого фактора (ТФ) и подопланина — наиболее изучаемых молекул, ответственных за возникновение тромбоэмболических осложнений в этой группе пациентов [2]. Основные специфические маркеры ВТЭО основаны на иммуногистохимических методах, выполнение которых возможно только при гистологическом исследовании опухолевого материала. Представляется актуальным поиск неинвазивных биомаркеров для оценки риска венозных тромбоэмболических осложнений. В настоящем обзоре освещены имеющиеся сегодня в литературе данные по этой теме.
Об авторах
А. В. СавельеваРоссия
Савельева Анна Витальевна, младший научный сотрудник НИГ кардиоонкологии
ул. Аккуратова, д. 2, Санкт-Петербург, 197341
Ю. И. Жиленкова
Россия
Жиленкова Юлия Исмаиловна, к.м.н., доцент кафедры лабораторной медицины с клиникой
Санкт-Петербург
М. А. Симакова
Россия
Симакова Мария Александровна, к.м.н., старший научный сотрудник-руководитель НИГ кардиоонкологии
Санкт-Петербург
О. В. Сироткина
Россия
Сироткина Ольга Васильевна, д.б.н., профессор кафедры лабораторной медицины с клиникой
Санкт-Петербург
Список литературы
1. Khorana AA, et al. Cancer-associated venous thromboembolism //Nature Reviews Disease Primers. 2022. Vol. 8. No. 1. P. 11.
2. Jo J, et al. Epidemiology, biology, and management of venous thromboembolism in gliomas: An interdisciplinary review //Neuro-oncology. 2023. P. noad059.
3. Falanga A, Marchetti M, Russo L. The mechanisms of cancer-associated thrombosis // Thrombosis research. 2015. Vol. 135. P. S8–S11.
4. Сомонова О.В. и др. Практические рекомендации по профилактике и лечению тромбоэмболических осложнений у онкологических больных // Злокачественные опухоли. 2021. Vol. 11. No. 3S2–2. P. 145–155.
5. ESC Scientific Document Group et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS) //European heart journal cardiovascular Imaging. 2022. Vol. 23. No. 10. P. E333–E465.
6. Lyman GH, et al. American Society of Hematology 2021 guidelines for management of venous thromboembolism: prevention and treatment in patients with cancer //Blood advances. 2021. Vol. 5. No. 4. P. 927–974.
7. Khorana AA, et al. Frequency, risk factors, and trends for venous thromboembolism among hospitalized cancer patients //Cancer: Interdisciplinary International Journal of the American Cancer Society. 2007. Vol. 110. No. 10. P. 2339–2346.
8. van Es N, et al. Comparison of risk prediction scores for venous thromboembolism in cancer patients: a prospective cohort study //haematologica. 2017. Vol. 102. No. 9. P. 1494.
9. Lyman GH, Carrier M, Ay C. American Society of Hematology 2021 guidelines for management of venous thromboembolism: prevention and treatment in patients with cancer (vol 5, pg 927, 2021) //Blood advances. 2021. Vol. 5. No. 7. P. 1953–1953.
10. Ostrom QT, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016 //Neuro-oncology. 2019. Vol. 21. No. Supplement_5. P. v1–v100.
11. Unruh D, et al. Mutant IDH1 and thrombosis in gliomas //Acta neuropathologica. 2016. Vol. 132. P. 917– 930.
12. Riedl J, Ay C. Venous thromboembolism in brain tumors: risk factors, molecular mechanisms, and clinical challenges //Seminars in thrombosis and hemostasis. Thieme Medical Publishers, 2019. Vol. 45. No. 04. P. 334–341.
13. Thaler J, et al. Biomarkers predictive of venous thromboembolism in patients with newly diagnosed high-grade gliomas //Neuro-oncology. 2014. Vol. 16. No. 12. P. 1645–1651.
14. Aishima K, Yoshimoto Y. Screening strategy using sequential serum D-dimer assay for the detection and prevention of venous thromboembolism after elective brain tumor surgery //British Journal of Neurosurgery. 2013. Vol. 27. No. 3. P. 348–354.
15. Posch F, et al. Dynamic assessment of venous thromboembolism risk in patients with cancer by longitudinal D-Dimer analysis: A prospective study //Journal of Thrombosis and Haemostasis. 2020. Vol. 18. No. 6. P. 1348–1356.
16. Marx S, et al. The role of platelets in cancer pathophysiology: focus on malignant glioma //Cancers. 2019. Vol. 11. No. 4. P. 569.
17. Di Vito C, et al. Platelets from glioblastoma patients promote angiogenesis of tumor endothelial cells and exhibit increased VEGF content and release //Platelets. 2017. Vol. 28. No. 6. P. 585–594.
18. Ugorski M, Dziegiel P, Suchanski J. Podoplanin-a small glycoprotein with many faces //American journal of cancer research. 2016. Vol. 6. No. 2. P. 370.
19. Suzuki-Inoue K. Platelets and cancer-associated thrombosis: focusing on the platelet activation receptor CLEC-2 and podoplanin //Hematology 2014, the American Society of Hematology Education Program Book. 2019. Vol. 2019. No. 1. P. 175–181.
20. Payne H, et al. Mice with a deficiency in CLEC-2 are protected against deep vein thrombosis //Blood, The Journal of the American Society of Hematology. 2017. Vol. 129. No. 14. P. 2013–2020.
21. Tawil N, et al. Glioblastoma cell populations with distinct oncogenic programs release podoplanin as procoagulant extracellular vesicles //Blood advances. 2021. Vol. 5. No. 6. P. 1682–1694.
22. Wang X, et al. Blocking podoplanin inhibits platelet activation and decreases cancer-associated venous thrombosis //Thrombosis Research. 2021. Vol. 200. P. 72–80.
23. Riedl J, et al. Podoplanin expression in primary brain tumors induces platelet aggregation and increases risk of venous thromboembolism //Blood, The Journal of the American Society of Hematology. 2017. Vol. 129. No. 13. P. 1831–1839.
24. Mir Seyed Nazari P, et al. Combination of isocitrate dehydrogenase 1 (IDH 1) mutation and podoplanin expression in brain tumors identifies patients at high or low risk of venous thromboembolism //Journal of Thrombosis and Haemostasis. 2018. Vol. 16. No. 6. P. 1121–1127.
25. Carrasco-Ramírez P, et al. Podoplanin is a com-ponent of extracellular vesicles that reprograms cell-derived exosomal proteins and modulates lymphatic vessel formation. Oncotarget. 2016; 7:16070.
26. Falanga A, et al. Mechanisms and risk factors of thrombosis in cancer. Critical reviews in oncology/hematology. 2017; 118:79–83.
27. Mege D, et al. The origin and concentration of circulating microparticles differ according to cancer type and evolution: A prospective single‐center study. International journal of cancer. 2016; 138:939–948.
28. Zhao X, et al. Plasma soluble podoplanin is a novel marker for the diagnosis of tumor occurrence and metastasis //Cancer science. 2018. Vol. 109. No. 2. P. 403–411.
29. Zhu X, et al. The detection of plasma soluble podoplanin of patients with breast cancer and its clinical signification //Cancer Management and Research. 2020. P. 13207–13214.
30. Cueni LN, et al. Podoplanin-Fc reduces lymphatic vessel formation in vitro and in vivo and causes disseminated intravascular coagulation when transgenically expressed in the skin //Blood, The Journal of the American Society of Hematology. 2010. Vol. 116. No. 20. P. 4376–4384.
31. Chistiakov DA, Chekhonin VP. Circulating tumor cells and their advances to promote cancer metastasis and relapse, with focus on glioblastoma multiforme //Experimental and molecular pathology. 2018. Vol. 105. No. 2. P. 166–174.
32. Gi T, et al. Histopathological features of cancer-associated venous thromboembolism: presence of intrathrombus cancer cells and prothrombotic factors // Arteriosclerosis, Thrombosis, and Vascular Biology. 2023. Vol. 43. No. 1. P. 146–159.
33. Ruf W, et al. Tissue factor and cell signalling in cancer progression and thrombosis //Journal of Thrombosis and Haemostasis. 2011. Vol. 9. P. 306–315.
34. Lima LG, Monteiro RQ. Activation of blood coagulation in cancer: implications for tumour progression //Bioscience reports. 2013. Vol. 33. No. 5. P. e00064.
35. Nomura S, et al. Microparticles as biomarkers of blood coagulation in cancer //Biomarkers in cancer. 2015. Vol. 7. P. BIC. S30347.
36. Geddings JE, Mackman N. Tumor-derived tissue factor–positive microparticles and venous thrombosis in cancer patients //Blood, The Journal of the American Society of Hematology. 2013. Vol. 122. No. 11. P. 1873–1880.
37. THALER J, et al. Microparticle-associated tissue factor activity, venous thromboembolism and mortality in pancreatic, gastric, colorectal and brain cancer patients //Journal of Thrombosis and Haemostasis. 2012. Vol. 10. No. 7. P. 1363–1370.
38. Burdett KB, et al. Determining venous thromboembolism risk in patients with adult-type diffuse glioma //Blood, The Journal of the American Society of Hematology. 2023. Vol. 141. No. 11. P. 1322–1336.
39. Dang L, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate //Nature. 2009. Vol. 462. No. 7274. P. 739–744.
40. Xu W, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases //Cancer cell. 2011. Vol. 19. No. 1. P. 17–30.
41. Wang P, et al. Mutations in isocitrate dehydrogenase 1 and 2 occur frequently in intrahepatic cholangiocarcinomas and share hypermethylation targets with glioblastomas //Oncogene. 2013. Vol. 32. No. 25. P. 3091–3100.
42. Tawil N, et al. Glioblastoma cell populations with distinct oncogenic programs release podoplanin as procoagulant extracellular vesicles //Blood advances. 2021. Vol. 5. No. 6. P. 1682–1694.
43. Burdett KB, et al. Determining venous thromboembolism risk in patients with adult-type diffuse glioma // Blood, The Journal of the American Society of Hematology. 2023. Vol. 141. No. 11. P. 1322–1336.
44. Ando K, et al. Elevated ratio of C-type lectin-like receptor 2 level and platelet count (C2PAC) aids in the diagnosis of post-operative venous thromboembolism in IDH-wildtype gliomas //Thrombosis Research. 2023. Vol. 223. P. 36–43
Рецензия
Для цитирования:
Савельева А.В., Жиленкова Ю.И., Симакова М.А., Сироткина О.В. Молекулярные механизмы венозных тромботических осложнений при глиальных опухолях центральной нервной системы. Российский журнал персонализированной медицины. 2024;4(2):87-95. https://doi.org/10.18705/2782-3806-2024-4-2-87-95. EDN: QWWNLG
For citation:
Savelyeva A.V., Zhilenkova Yu.I., Simakova M.A., Sirotkina O.V. Molecular mechanisms of thrombotic complications in glial tumors. Russian Journal for Personalized Medicine. 2024;4(2):87-95. (In Russ.) https://doi.org/10.18705/2782-3806-2024-4-2-87-95. EDN: QWWNLG