Preview

Russian Journal for Personalized Medicine

Advanced search

The role of miRNAs in the pathogenesis of venous thromboembolic comlications

https://doi.org/10.18705/2782-3806-2022-2-1-43-50

Abstract

Diagnosis of pulmonary embolism (PE), chronic thromboembolic pulmonary hypertension (CTEPH) and other prothrombotic complications remains a challenge due to various clinical manifestations. In recent years, numerous studies have focused on finding reliable biomarkers to confirm pathology. It was shown that microRNAs (miRNAs) regulate gene expression in a wide range of pathophysiological processes, and their profile can change in different cardiovascular diseases. miRNAs are involved in many biological processes, including proliferation, apoptosis and cell differentiation, and angiogenesis. Therefore, circulating miRNAs are considered as new biomarkers. The paper presents basic information on the role of microRNA in the genesis of PE and postthromboembolic complications.

About the Authors

E. A. Zolotova
Almazov National Medical Research Centre, World-Class Research Centre for Personalized Medicine
Russian Federation

Zolotova Ekaterina A., Junior Researcher, Research Group of Cardio-Oncology, World-Class Research Centre for Personalized Medicine

Akkuratova str. 2, Saint Petersburg, 197341



M. A. Simakova
Almazov National Medical Research Centre, World-Class Research Centre for Personalized Medicine
Russian Federation

Simakova Maria A., PhD., Head, Senior Researcher, Research Group of Cardio-Oncology, World-Class Research Centre for Personalized Medicine

Saint-Petersburg



Yu. I. Zhilenkova
Almazov National Medical Research Centre, World-Class Research Centre for Personalized Medicine
Russian Federation

Zhilenkova Yulia I., PhD., Assistant Professor, Laboratory Medicine and Genetics Department, Almazov National Medical Research Centre

Saint-Petersburg



O. S. Melnichnikova
Almazov National Medical Research Centre, World-Class Research Centre for Personalized Medicine
Russian Federation

Melnichnikova Olga S., PhD, Senior Researcher, Research Group of Cardio-Oncology, World-Class Research Centre for Personalized Medicine

Saint-Petersburg



K. A. Pishchulov
Almazov National Medical Research Centre, World-Class Research Centre for Personalized Medicine
Russian Federation

Pishchulov Konstantin A., Junior Researcher, Research Group of Cardio-Oncology, World-Class Research Centre for Personalized Medicine

Saint-Petersburg



O. M. Moiseeva
Almazov National Medical Research Centre, World-Class Research Centre for Personalized Medicine
Russian Federation

Moiseeva Olga M., MD, PhD, DSc, Professor, Head, Noncoronary Heart Disease Department, Almazov National Medical Research Centre

Saint-Petersburg



T. V. Vavilova
Almazov National Medical Research Centre, World-Class Research Centre for Personalized Medicine
Russian Federation

Vavilova Tatiana V., MD, D.Sc., Head, Laboratory Medicine and Genetics Department, Almazov National Medical Research Centre

Saint-Petersburg



O. V. Sirotkina
Almazov National Medical Research Centre, World-Class Research Centre for Personalized Medicine; Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Centre “Kurchatov Institute”
Russian Federation

Sirotkina Olga V., D.Sc., Chief Researcher, Research Group of Cardio-oncology, World-Class Research Centre for Personalized Medicine, professor of Department of Laboratory Medicine and Genetics, Almazov National Medical Research Centre, senior researcher, Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute»

Saint-Petersburg, Gatchina



References

1. Kim NH, Delcroix M, Jais X, Madani MM, Matsubara H, Mayer E, и др. Chronic thromboembolic pulmonary hypertension. Eur Respir J. 2019;53(1):1801915.

2. Ramírez P, Otero R, Barberà JA. Pulmonary chronic thromboembolic disease. Arch Bronconeumol Engl Ed. 2020;56(5):314–21.

3. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.

4. Almeida MI, Reis RM, Calin GA. MicroRNA history: Discovery, recent applications, and next frontiers. Mutat Res Mol Mech Mutagen. 2011;717(1–2):1–8.

5. Tétreault N, De Guire V. miRNAs: Their discovery, biogenesis and mechanism of action. Clin Biochem. 2013;46(10–11):842–5.

6. Xiao J, Jing Z-C, Ellinor PT, Liang D, Zhang H, Liu Y, et al. MicroRNA-134 as a potential plasma biomarker for the diagnosis of acute pulmonary embolism. J Transl Med. 2011;9(1):159.

7. Etheridge A, Lee I, Hood L, Galas D, Wang K. Extracellular microRNA: A new source of biomarkers. Mutat Res Mol Mech Mutagen. 2011;717(1–2):85–90.

8. Ha M, Kim V. Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology. 2014;15(8):509– 524.

9. O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Frontiers in Endocrinology. 2018;9.

10. Tan Y, Zhang B, Wu T, Skogerbø G, Zhu X, Guo X, et al. Transcriptional inhibiton of Hoxd4 expression by miRNA-10a in human breast cancer cells. BMC Mol Biol. 2009;10(1):12.

11. Wang L, Guo L-J, Liu J, Wang W, Yuan JX-J, Zhao L, et al. MicroRNA Expression Profile of Pulmonary Artery Smooth Muscle Cells and the Effect of Let-7d in Chronic Thromboembolic Pulmonary Hypertension. Pulm Circ. 2013;3(3):654–64.

12. Huber LC, Ulrich S, Leuenberger C, Gassmann M, Vogel J, von Blotzheim LG, et al. microRNA-125a in pulmonary hypertension: Regulator of a proliferative phenotype of endothelial cells. Exp Biol Med. 2015;240(12):1580–9.

13. Courboulin A, Paulin R, Giguère NJ, Saksouk N, Perreault T, Meloche J, et al. Role for miR-204 in human pulmonary arterial hypertension. J Exp Med. 2011;208(3):535–48.

14. Guo L, Yang Y, Liu J, Wang L, Li J, Wang Y, et al. Differentially Expressed Plasma MicroRNAs and the Potential Regulatory Function of Let-7b in Chronic Thromboembolic Pulmonary Hypertension. PLoS ONE. 2014;9(6):e101055.

15. Gong J, Yang Y, Wang J, Li Y, Guo X, Huang Q, et al. Expression of miR-93-5p as a Potential Predictor of the Severity of Chronic Thromboembolic Pulmonary Hypertension. BioMed Res Int. 2021:1–7.

16. Chen Z, Nakajima T, Tanabe N, Hinohara K, Sakao S, Kasahara Y, et al. Susceptibility to chronic thromboembolic pulmonary hypertension may be conferred by miR-759 via its targeted interaction with polymorphic fibrinogen alpha gene. Hum Genet. 2010;128(4):443–52.

17. Wang L, Guo L-J, Liu J, Wang W, Yuan JX-J, Zhao L, et al. MicroRNA Expression Profile of Pulmonary Artery Smooth Muscle Cells and the Effect of Let-7d in Chronic Thromboembolic Pulmonary Hypertension. Pulm Circ. 2013;3(3):654–64.

18. Miao R, Wang Y, Wan J, Leng D, Gong J, Li J, et al. Microarray Analysis and Detection of MicroRNAs Associated with Chronic Thromboembolic Pulmonary Hypertension. BioMed Res Int. 2017:1–9.

19. Fabro AT, Machado-Rugolo J, Baldavira CM, Prieto TG, Farhat C, Rotea ManGone FR, et al. Circulating Plasma miRNA and Clinical/Hemodynamic Characteristics Provide Additional Predictive Information About Acute Pulmonary Thromboembolism, Chronic Thromboembolic Pulmonary Hypertension and Idiopathic Pulmonary Hypertension. Front Pharmacol. 2021;12:648769.

20. Xiao J, Jing Z-C, Ellinor PT, Liang D, Zhang H, Liu Y, et al. MicroRNA-134 as a potential plasma biomarker for the diagnosis of acute pulmonary embolism. J Transl Med. 2011;9(1):159.

21. Wang Q, Ma J, Jiang Z, Wu F, Ping J, Ming L. Diagnostic value of circulating microRNA-27a/b in patients with acute pulmonary embolism. Int Angiol. 2018;37(1):7.

22. Kessler T, Erdmann J, Vilne B, Bruse P, Kurowski V, Diemert P, et al. Serum microRNA-1233 is a specific biomarker for diagnosing acute pulmonary embolism. Journal of Translational Medicine. 2016;14(1).

23. Liu T, Kang J, Liu F. Plasma Levels of microRNA-221 (miR-221) are Increased in Patients with Acute Pulmonary Embolism. Medical Science Monitor. 2018;24:8621–8626.

24. Сироткина О.В., Улитина А.С., Жиленкова Ю.И. и др. Механизмы активации свертывания у кардиологических больных: новые данные и новые перспективы. Материалы X Всероссийской конференции с международным участием «Противоречия современной кардиологии: спорные и нерешенные вопросы» (12–13 ноября 2021 года). — Самара, 2021. — 66 с. С. 49–50.

25. Xu L, Wu F, Yang L, Wang F, Zhang T, Deng X, et al. miR-144/451 inhibits c-Myc to promote erythroid differentiation. FASEB J 2020;34(10).

26. Rasmussen KD, Simmini S, Abreu-Goodger C, Bartonicek N, Di Giacomo M, Bilbao-Cortes D, et al. The miR-144/451 locus is required for erythroid homeostasis. J Exp Med. 2010; 207(7): 1351–1358.

27. Saki N, Abroun S, Soleimani M et al. MicroRNA expression in β-thalassemia and sickle cell disease: a role in the induction of fetal hemoglobin. Cell J 17(4):583– 592.

28. Wagner GM, Chiu DT., Yee MC, Lubin BH. Red cell vesiculation-a common membrane physiologic eventJ Lab Med. 1986;108(4):315–324.

29. Пищулов К.А., Мельничникова О.С., Золотова Е.А. и др. Факторы риска венозных тромбоэмболических осложнений у пациентов с глиальными опухолями головного мозга. Российский журнал персонализированной медицины. 2021;1(1):123–131.

30. Zhou X, Wen W, Shan X, Qian J, Li H, Jiang T, et al. MiR-28-3p as a potential plasma marker in diagnosis of pulmonary embolism. Thromb Res.2016;138:91–5.

31. Oto J, Plana E, Solmoirago MJ, Fernández-Pardo Á, Hervás D, Cana F, et al. microRNAs and Markers of Neutrophil Activation as Predictors of Early Incidental Post-Surgical Pulmonary Embolism in Patients with Intracranial Tumors. Cancers. 2020;12(6):1536.


Review

For citations:


Zolotova E.A., Simakova M.A., Zhilenkova Yu.I., Melnichnikova O.S., Pishchulov K.A., Moiseeva O.M., Vavilova T.V., Sirotkina O.V. The role of miRNAs in the pathogenesis of venous thromboembolic comlications. Russian Journal for Personalized Medicine. 2022;2(1):43-50. (In Russ.) https://doi.org/10.18705/2782-3806-2022-2-1-43-50

Views: 196


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3806 (Print)
ISSN 2782-3814 (Online)