Preview

Russian Journal for Personalized Medicine

Advanced search

Modern approaches to the application of radiation research methods for visualization of the glymphatic system of the brain

https://doi.org/10.18705/2782-3806-2025-5-1-50-57

EDN: UDMJMF

Abstract

The glymphatic system of the brain plays an important role in removing metabolic waste and maintaining the homeostasis of the central nervous system. Disorders of its functioning are associated with the development of neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases. Modern methods of radiation diagnostics, including contrast-enhanced magnetic resonance imaging (MRI), functional MRI, and diffusion-weighted imaging, allow us to study the dynamics of cerebrospinal fluid flow and glymphatic clearance processes. This article discusses current approaches to the visualization of the glymphatic system, their diagnostic capabilities and prospects for application in clinical practice.

About the Authors

D. A. Beregovskii
Almazov National Medical Research Centre
Russian Federation

Beregovskii Daniil A., resident of the Department of Radiation Diagnostics and medical imaging with the clinic

Akkuratova str., 2, Saint Petersburg, 197341



Ya. A. Filin
Almazov National Medical Research Centre
Russian Federation

Filin Yana A., resident of the Department of Radiation Diagnostics and medical imaging with the clinic

Akkuratova str., 2, Saint Petersburg, 197341



A. M. Klimovich
Almazov National Medical Research Centre
Russian Federation

Klimovich Anastasiya M., resident of the Department of Radiation Diagnostics and medical imaging with the clinic

Akkuratova str., 2, Saint Petersburg, 197341



D. D. Dorohova
Almazov National Medical Research Centre
Russian Federation

Dorohova Dariya D., resident of the Department of Radiation Diagnostics and medical imaging with the clinic 

Akkuratova str., 2, Saint Petersburg, 197341



G. E. Trufanov
Almazov National Medical Research Centre
Russian Federation

Trufanov Gennady E., doctor of medical sciences, professor, head of the department of radiation diagnostics and medical imaging with clinic

Akkuratova str., 2, Saint Petersburg, 197341



References

1. Iliff JJ, Wang M, Liao Y, et al. A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid Beta. Science Translational Medicine. 2012;4(147), 147ra111.

2. Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatics. Nature. 2015;523(7560):337–341.

3. Aspelund A, Antila S, Proulx ST, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med. 2015;212(7):991–999.

4. Jessen NA, Munk AS, Lundgaard I, Nedergaard M. The Glymphatic System: A Beginner’s Guide. Neurochemical Research. 2015;40(12): 2583–2599.

5. Xie L, Kang H, Xu Q, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013 Oct 18;342(6156):373–7.

6. Kress BT, Iliff JJ, Xia M, et al. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol. 2014;76(6):845–861.

7. Mestre H, Mori Y, Nedergaard M. The Brain’s Glymphatic System: Current Controversies. Trends Neurosci. 2020;43(7):458–466.

8. Hablitz LM, Vinitsky HS, Sun Q, et al. Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Sci Adv. 2019;5(2):eaav5447.

9. Ma Q, Ineichen BV, Detmar M, Proulx ST. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat Commun. 2017;8:1434.

10. Benveniste P, Lee SR, et al. Glymphatic system dysfunction in neurodegeneration. Neuroimaging, 2020.

11. Smith HH, Hayes RA, Jackson TK, et al. DCEMRI applications in glymphatic function assessment. J. Neurosci. Methods. 2021.

12. Liu MW, Zhang L, Choi SW, et al. Diffusion tensor imaging in glymphatic circulation. Neuroimage. 2019.

13. Brown KR, Johnson AC. PET imaging of amyloid and tau in neurodegenerative diseases. J. Cereb. Blood Flow Metab. 2021.

14. Morris LG, Anderson SK. Emerging imaging techniques in glymphatic function. Radiology. 2022.

15. Harding AF, Wang AC. Optical coherence tomography for assessing CSF dynamics. Opt. Lett. 2020.

16. Thomson EM, Thompson BC. MRS in understanding brain glymphatics. Neuroimage Clin. 2021.

17. Kwon SW, Smith JM. SPECT/CT in neurodegeneration. J. Nucl. Med. 2022.

18. Lee DH, Cheng PG. PET imaging and metabolic evaluation of neurodegenerative diseases. J. Alzheimer’s Dis. 2020.

19. Harris PL, Watts GN. Combined imaging techniques in glymphatic system diagnostics. Brain Imaging and Behavior. 2023.

20. Iliff JJ, et al. Cerebral Arterial Pulsation Drives Paravascular CSF–Interstitial Fluid Exchange in the Murine Brain. Journal of Neuroscience. 2013.

21. Kiviniemi V, Wang X, Korhonen V, et al. Ultra-fast magnetic resonance encephalography of physiological brain activity — Glymphatic pulsation mechanisms? Journal of Cerebral Blood Flow & Metabolism. 2016.

22. Ringstad G, et al. Brain-wide glymphatic enhancement and clearance in humans assessed with MRI. JCI Insight. 2018.

23. Mestre H, et al. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nature Communications. 2018.

24. Benveniste H, Liu X, Koundal S, et al. The Glymphatic System and Waste Clearance with Brain Aging: A Review. Gerontology. 2019;65(2):106–119.

25. Yamada S, et al. Visualization of cerebrospinal fluid movement with phase-contrast magnetic resonance imaging. Neurosurgical Review. 2015.

26. Taoka T, Naganawa S. Glymphatic imaging using MRI. J Magn Reson Imaging. 2020;51:11–24.

27. Smith AF, et al. Arterial spin labeling MRI and cerebrovascular reactivity in neurodegenerative disease. Neuroimage: Clinical. 2020.

28. Badaut J, Fukuda AM, Jullienne A, Petry KG. Aquaporin and brain diseases. Biochim Biophys Acta. 2014 May;1840(5):1554–65.

29. Rasmussen MK, Mestre H, Nedergaard M. Fluid transport in the brain. Physiol Rev. 2022 Apr 1;102(2):1025–1151.

30. MacIntosh BJ, et al. Magnetic resonance spectroscopy and its applications in neuroscience. NeuroImage. 2019.

31. Lundgaard I, et al. Glymphatic clearance of lactate from the rodent brain: The role of astrocytic aquaporin-4. Journal of Physiology. 2017.

32. Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. The Lancet Neurology. 2018;17(11):1016–1024.

33. Alexander AL, Lee JE, Lazar M, Field AS. Diffusion Tensor Imaging of the Brain. Neurotherapeutics. 2007;4(3):316–329.

34. Jessen NA, Munk AS, Lundgaard I, Nedergaard M. The Glymphatic System: A Beginner’s Guide. Neurochemical Research. 2015;40(12):2583–2599.

35. Taoka T, Naganawa S. Neurofluid dynamics and the glymphatic system: A neuroimaging perspective. Neuroscience. 2020;437:40–50.

36. Yamada S, Nakagawa S. Cerebrospinal Fluid Physiology and Its Implication for the Pathogenesis of Idiopathic Normal Pressure Hydrocephalus. Neurosurgical Review. 2019;42(2):275–290.

37. Linninger AA, Tangen K, Hsu CY, Frim DM. Cerebrospinal fluid mechanics and its coupling to cerebrovascular dynamics. Annual Review of Fluid Mechanics. 2017;49:117–148.

38. Nedergaard M, Goldman SA. Glymphatic failure as a final common pathway to dementia. Science. 2020.

39. Lee H, Xie L, Yu M, et al. The effect of sleep disruption on the glymphatic system in Alzheimer’s disease. Nature Neuroscience. 2015.

40. Fultz NE, Bonmassar G, Setsompop K, et al. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science Advances. 2019.

41. Ringstad G, Vatnehol SAS, Eide PK. Glymphatic MRI in idiopathic normal pressure hydrocephalus. Brain. 2017.

42. Herholz K. PET studies in dementia. Annals of Nuclear Medicine. 2003.

43. Mosconi L. Glucose metabolism in normal aging and Alzheimer’s disease: Methodological and physiological considerations for PET studies. Clinical Neuroscience. 2005.

44. Jack CR Jr, et al. The role of β-amyloid PET imaging in Alzheimer’s disease. Neurology. 2010.

45. Villemagne VL, et al. Amyloid imaging with PET in Alzheimer’s disease: Progress and perspectives. Molecular Psychiatry. 2012.

46. Chien DT, et al. Tau imaging using PET. Journal of Nuclear Medicine. 2014.

47. Lassen NA. Cerebral blood flow and neuroimaging. European Journal of Nuclear Medicine. 1999.

48. Brooks DJ. Imaging neuroinflammation in neurodegenerative disorders. Journal of Neurology, Neurosurgery Psychiatry. 2016.

49. Iliff JJ, Nedergaard M. Glymphatic fluid transport in the central nervous system: implications for neurodegenerative diseases. Neuron. 2013.

50. Ringstad G, Eide PK. Glymphatic MRI: Imaging of cerebrospinal fluid influx, diffusivity, and clearance. Neuroimage. 2021.

51. Mestre H, Hablitz LM, Xavier AL, et al. Aquaporin-4-dependent glymphatic solute transport in the awake brain. Nat Commun. 2018.

52. Lee H, Mortensen K, Sanggaard S, et al. In Vivo Evidence for a Glymphatic System in the Mouse Brain. Sci Transl Med. 2014.

53. Harrison IF, Siow B, Akilo AB, et al. Non-invasive imaging of glymphatic function. Fluids Barriers CNS. 2018.

54. Reeves BC, Karimy JK, Kuchinad A, et al. Glymphatic system impairment in Alzheimer’s disease and other neurological disorders. Nat Rev Neurol. 2020.

55. Taoka T, Naganawa S. Neurofluid dynamics and glymphatic system imaging: A review. Front Neurosci. 2022.

56. van Veluw SJ, Charidimou A, Bounomia N, et al. AI-driven approaches for glymphatic imaging analysis. J Cereb Blood Flow Metab. 2023.

57. Plog BA, Nedergaard M. The glymphatic system in central nervous system health and disease: past, present, and future. Annu Rev Pathol. 2018.


Review

For citations:


Beregovskii D.A., Filin Ya.A., Klimovich A.M., Dorohova D.D., Trufanov G.E. Modern approaches to the application of radiation research methods for visualization of the glymphatic system of the brain. Russian Journal for Personalized Medicine. 2025;5(1):50-57. (In Russ.) https://doi.org/10.18705/2782-3806-2025-5-1-50-57. EDN: UDMJMF

Views: 77


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3806 (Print)
ISSN 2782-3814 (Online)