THROMBIN GENERATION TEST AS AN INTEGRAL ANALYSIS OF THE HEMOSTASIS SYSTEM: TECHNICAL CAPABILITIES AND APPLICATION IN LABORATORY PRACTICE
https://doi.org/10.18705/2782-3806-2022-2-3-119-128
Abstract
This review is devoted to one of the integral tests for assessing the hemostasis system — the thrombin generation test (TGT), its technical characteristics, problems in standardization and possible clinical use. Evaluation of thrombin generation (TG) is more sensitive to changes occurring in the hemostasis system, since it takes into account the effect of both procoagulant and anticoagulant factors in the process of TG. It is important to note that there are options for setting TGT in platelet-rich plasma or in whole blood, which brings the researcher closer to in vivo conditions. However, despite the obvious advantages of this analysis when compared with routine screening tests for assessing the hemostasis system, there are number of limitations, including the lack of standardization, which does not currently allow the introduction of TGT into clinical practice. This review discusses the technical characteristics of TGT and variants of reagent kits depending on the clinical task, and provides the results of recent studies in the field of clinical use of TGT, demonstrating the prospects of GT analysis for assessing the risk of both hemorrhagic complications and thrombotic events.
About the Authors
O. S. MelnichnikovaRussian Federation
Melnichnikova Olga S., PhD, Senior Researcher, Research Group of Cardio-Oncology
Akkuratova str., 2, Saint Petersburg, 197341
Y. I. Zhilenkova
Russian Federation
Zhilenkova Yulia I., PhD., Assistant Professor, Laboratory Medicine and Genetics Department
Akkuratova str., 2, Saint Petersburg, 197341
E. A. Zolotova
Russian Federation
Zolotova Ekaterina A., Junior Researcher, Research Group of Cardio-Oncology
Akkuratova str., 2, Saint Petersburg, 197341
K. A. Pishchulov
Russian Federation
Pishchulov Konstantin A., Junior Researcher, Research Group of Cardio-Oncology
Akkuratova str., 2, Saint Petersburg, 197341
O. V. Sirotkina
Russian Federation
Sirotkina Olga V., D.Sc., Chief Researcher, Research Group of Cardio-oncology, professor of Department of Laboratory Medicine and Genetics
Akkuratova str., 2, Saint Petersburg, 197341
M. A. Simakova
Russian Federation
Simakova Maria A., PhD., Head, Senior Researcher, Research Group of Cardio-Oncology
Akkuratova str., 2, Saint Petersburg, 197341
T. V. Vavilova
Russian Federation
Vavilova Tatiana V., MD, D.Sc., Head, Laboratory Medicine and Genetics Department
Akkuratova str., 2, Saint Petersburg, 197341
References
1. Depasse F, Binder NB, Mueller J, et al. Thrombin generation assays are versatile tools in blood coagulation analysis: A review of technical features, and applications from research to laboratory routine. J Thromb Haemost. 2021; 19: 2907–2917.
2. Баландина А.Н., Кольцова Е.М., Шибеко А.М. Тромбодинамика: новый подход к диагностике нарушений системы гемостаза. Вопросы гематологии/ онкологии и иммунопатологии в педиатрии.2018; 17: 114–116.
3. Macfarlane RG, Biggs R. A thrombin generation test; the application in haemophilia and thrombocytopenia. J Clin Pathol. 1953; 6: 3–8.
4. Hemker HC, Giesen P, Al Dieri R, et al. Calibrated automated thrombin generation measurement in clotting plasma. Pathophysiol Haemost Thromb. 2003; 33: 4–15.
5. Ten Cate H. Thrombin generation in clinical conditions. Thromb Res. 2012; 129: 367–370.
6. Tripodi A. Thrombin Generation Assay and Its Application in the Clinical Laboratory. Clin Chem. 2016; 62: 699–707.
7. Panova-Noeva M, van der Meijden PEJ, ten Cate H. Clinical Applications, Pitfalls, and Uncertainties of Thrombin Generation in the Presence of Platelets. J Clin Med. 2019; 9: 92.
8. Regnault V, Béguin S, Lecompte T. Calibrated Automated Thrombin Generation in Frozen-Thawed Platelet-Rich Plasma to Detect Hypercoagulability. PHT. 2003; 33: 23–29.
9. Prior SM, Mann KG, Freeman K, et al. Continuous thrombin generation in whole blood: new applications for assessing activators and inhibitors of coagulation. Anal Biochem. 2018; 551: 19–25.
10. Loeffen R, Kleinegris M-CF, Loubele STBG, et al. Preanalytic variables of thrombin generation: towards a standard procedure and validation of the method. J Thromb Haemost. 2012; 10: 2544–2554.
11. Dargaud Y, Wolberg AS, Gray E, et al. Proposal for standardized preanalytical and analytical conditions for measuring thrombin generation in hemophilia: communication from the SSC of the ISTH. J Thromb Haemost. 2017; 15: 1704–1707.
12. Salvagno GL, Astermark J, Ekman M, et al. Impact of different inhibitor reactivities with commercial factor VIII concentrates on thrombin generation. Haemophilia. 2007; 13: 51–56.
13. Váradi K, Turecek PL, Schwarz HP. Thrombin generation assay and other universal tests for monitoring haemophilia therapy. Haemophilia. 2004; 10 Suppl 2: 17–21.
14. Pike GN, Cumming AM, Hay CRM, et al. Sample conditions determine the ability of thrombin generation parameters to identify bleeding phenotype in FXI deficiency. Blood. 2015; 126: 397–405.
15. Ogiwara K, Nogami K, Matsumoto N, et al. A modified thrombin generation assay to evaluate the plasma coagulation potential in the presence of emicizumab, the bispecific antibody to factors IXa/X. Int J Hematol. 2020; 112: 621–630.
16. Binder NB, Depasse F, Mueller J, et al. Clinical use of thrombin generation assays. J Thromb Haemost. 2021; 19: 2918–2929.
17. Teichman J, Chaudhry HR, Sholzberg M. Novel assays in the coagulation laboratory: a clinical and laboratory perspective. Transfus Apher Sci. 2018; 57: 480–484.
18. Váradi K, Negrier C, Berntorp E, et al. Monitoring the bioavailability of FEIBA with a thrombin generation assay. J Thromb Haemost. 2003; 1: 2374–2380.
19. Dargaud Y, Lienhart A, Janbain M, et al. Use of thrombin generation assay to personalize treatment of breakthrough bleeds in a patient with hemophilia and inhibitors receiving prophylaxis with emicizumab. Haematologica. 2018; 103: e181–e183.
20. Valke LLFG, Bukkems LH, Barteling W, et al. Pharmacodynamic monitoring of factor VIII replacement therapy in hemophilia A: Combining thrombin and plasmin generation. J Thromb Haemost. 2020; 18: 3222–3231.
21. Rugeri L, Beguin S, Hemker C, et al. Thrombingenerating capacity in patients with von Willebrand’s disease. Haematologica. 2007; 92: 1639–1646.
22. van Hylckama Vlieg A, Baglin CA, Luddington R, et al. The risk of a first and a recurrent venous thrombosis associated with an elevated D-dimer level and an elevated thrombin potential: results of the THEVTE study. J Thromb Haemost. 2015; 13: 1642–1652.
23. Simioni P, Castoldi E, Lunghi B, et al. An underestimated combination of opposites resulting in enhanced thrombotic tendency. Blood. 2005; 106: 2363–2365.
24. Alhenc-Gelas M, Canonico M, Picard V. Influence of natural SERPINC1 mutations on ex vivo thrombin generation. J Thromb Haemost. 2010; 8: 845–848.
25. Chaireti R, Jennersjö C, Lindahl TL. Is thrombin generation at the time of an acute thromboembolic episode a predictor of recurrence? The LInköping Study on Thrombosis (LIST)--a 7-year follow-up. Thromb Res. 2013; 131: 135–139.
26. Lim HY, O’Malley C, Donnan G, et al. A review of global coagulation assays — Is there a role in thrombosis risk prediction? Thromb Res. 2019; 179: 45–55.
27. Tripodi A, Martinelli I, Chantarangkul V, et al. The endogenous thrombin potential and the risk of venous thromboembolism. Thromb Res. 2007; 121: 353–359.
28. Zuily S, Ait Aissa K, Membre A, et al. Thrombin generation in antiphospholipid syndrome. Lupus. 2012; 21: 758–760.
29. Liestøl S, Sandset PM, Mowinckel M-C, et al. Activated protein C resistance determined with a thrombin generation-based test is associated with thrombotic events in patients with lupus anticoagulants. J Thromb Haemost. 2007; 5: 2204–2210.
30. Efthymiou M, Lawrie AS, Mackie I, et al. Thrombin generation and factor X assays for the assessment of warfarin anticoagulation in thrombotic antiphospholipid syndrome. Thromb Res. 2015; 135: 1191–1197.
31. Cohen H, Hunt BJ, Efthymiou M, et al. Rivaroxaban versus warfarin to treat patients with thrombotic antiphospholipid syndrome, with or without systemic lupus erythematosus (RAPS): a randomised, controlled, open-label, phase 2/3, non-inferiority trial. Lancet Haematol. 2016; 3: e426-436.
32. Bergstrom CP, Zia A, Sarode R, et al. Thrombin Generation in a patient with Triple Positive Antiphospholipid Syndrome Treated with Three Different Anticoagulants. Transfus Apher Sci. 2020; 59: 102815.
33. Мельничникова О.С., Лапин С.В., Тишков А.В. и др. Тест генерации тромбина в диагностике гиперкоагуляции у пациентов с атеросклерозом. Медицинский Алфавит. 2016; 4: 29–33.
34. Мельничникова О.С., Семенов А.П., Панов А.В. и др. Исследование генерации тромбина у больных со стабильной ишемической болезнью с предшествующим инфарктом миокарда. Трансляционная медицина. 2019; 6: 37–45.
35. Loeffen R, Godschalk TC, van Oerle R, et al. The hypercoagulable profile of patients with stent thrombosis. Heart. 2015; 101: 1126–1132.
36. Напалкова О.С., Эмануэль В.Л., Карпенко М.А. и др. Оценка риска повторной операции реваскуляризации миокарда с помощью теста генерации тромбина. Тромбоз, гемостаз и реология. 2016. С. 65–71.
37. Melnichnikova O, Simakova M, Moiseeva O, et al. The dynamics of thrombin formation in patients with pulmonary arterial hypertension. Thromb Res. 2021; 208: 230–232.
38. Carcaillon L, Alhenc-Gelas M, Bejot Y, et al. Increased thrombin generation is associated with acute ischemic stroke but not with coronary heart disease in the elderly: the Three-City cohort study. Arterioscler Thromb Vasc Biol. 2011; 31: 1445–1451.
39. Ay C, Dunkler D, Simanek R, et al. Prediction of venous thromboembolism in patients with cancer by measuring thrombin generation: results from the Vienna Cancer and Thrombosis Study. J Clin Oncol. 2011; 29: 2099–2103.
40. Chistolini A, Ruberto F, Alessandri F, et al. Effect of low or high doses of low-molecular-weight heparin on thrombin generation and other haemostasis parameters in critically ill patients with COVID-19. Br J Haematol. 2020; 190: e214–e218.
41. van de Berg TW, Hulshof A-MM, Nagy M, et al. Suggestions for global coagulation assays for the assessment of COVID-19 associated hypercoagulability. Thromb Res. 2021; 201: 84–89.
42. de la Morena-Barrio ME, Bravo-Pérez C, Miñano A, et al. Prognostic value of thrombin generation parameters in hospitalized COVID-19 patients. Sci Rep. 2021; 11: 7792.
43. Billoir P, Alexandre K, Duflot T, et al. Investigation of Coagulation Biomarkers to Assess Clinical Deterioration in SARS-CoV-2 Infection. Front Med (Lausanne). 2021; 8: 670694.
44. Bouck EG, Denorme F, Holle LA, et al. COVID-19 and Sepsis Are Associated With Different Abnormalities in Plasma Procoagulant and Fibrinolytic Activity. Arterioscler Thromb Vasc Biol. 2021; 41: 401–414.
45. Hardy M, Lecompte T, Douxfils J, et al. Management of the thrombotic risk associated with COVID-19: guidance for the hemostasis laboratory. Thrombosis Journal. 2020; 18: 17.
46. Benati M, Salvagno GL, Nitto SD, et al. Thrombin Generation in Patients with Coronavirus Disease 2019. Semin Thromb Hemost. 2021; 47: 447–450.
47. von Meijenfeldt FA, Havervall S, Adelmeijer J, et al. Prothrombotic changes in patients with COVID-19 are associated with disease severity and mortality. Res Pract Thromb Haemost. 2021; 5: 132–141
Review
For citations:
Melnichnikova O.S., Zhilenkova Y.I., Zolotova E.A., Pishchulov K.A., Sirotkina O.V., Simakova M.A., Vavilova T.V. THROMBIN GENERATION TEST AS AN INTEGRAL ANALYSIS OF THE HEMOSTASIS SYSTEM: TECHNICAL CAPABILITIES AND APPLICATION IN LABORATORY PRACTICE. Russian Journal for Personalized Medicine. 2022;2(3):119-128. (In Russ.) https://doi.org/10.18705/2782-3806-2022-2-3-119-128